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Foreword
Clinical Laboratory Mathematics is part of Pearson’s Clinical Laboratory Science series of textbooks, 
which is designed to balance theory and practical applications in a way that is engaging and useful to stu-
dents. The author of Clinical Laboratory Mathematics presents highly detailed technical information 
and effective tools that will help beginning learners envision themselves as members of a healthcare team, 
while helping advanced learners and practitioners continue their education. The synergy of theoretical and 
practical information in this text enables learners to analyze data and synthesize conclusions. Additional 
applications and instructional resources are available at www.myhealthprofessionskit.com.

We hope that this book, as well as the entire series, proves to be a valuable educational resource.

Elizabeth A. Gockel-Blessing (formerly Zeibig), PhD, MLS(ASCP)CM

Clinical Laboratory Science Series Editor, Pearson Health Science
Interim Associate Dean for Student and Academic Affairs, Department of Clinical Laboratory 
 Science, Doisy College of Health Sciences, Saint Louis University

www.myhealthprofessionskit.com
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Preface
Clinical Laboratory Mathematics is a comprehensive textbook on the mathematical techniques and 
theories of clinical laboratory science. It is written for students at any point on the trajectory toward an 
undergraduate or graduate degree in the discipline, from an associate’s degree to a doctorate. Students and 
practitioners of related disciplines will also find the book useful: pathologists, medical students, nurses, 
pharmacists, biochemists, biomedical engineers, and physician assistants.

Going well beyond the notion of “relevance,” this book tries to convey the conviction that learning 
mathematics is not only helpful, but often critical, in the high-technology milieu of a clinical laboratory. It 
repeatedly highlights the reasons for developing a battery of mathematical tools: (1) to handle unfamiliar 
mathematical problems that arise in the course of laboratory work; (2) to follow the reasoning in seminars, 
papers, and discussions; (3) to detect mathematical errors made by individuals; (4) to recognize instrument 
malfunctions or method anomalies through mathematical irregularities; (5) to adapt new methods, ideas, 
and technologies that require some mathematical competence; and (6) to shift smoothly into research-
oriented work, whether in the form of short-term projects in a routine laboratory, long-term projects in 
a research laboratory, or method development at a diagnostics company.

Therefore, the book integrates real-world examples of mathematical tools at work in the clinical 
laboratory. To achieve this goal, practice problems are strategically designed to have the student confront 
scenarios involving mathematical questions that have both context and consequence. Such problems offer 
the student a chance to think under the circumstances that a laboratory professional might encounter on 
the job, requiring him or her to solve a mathematical problem while coming to appreciate the importance 
of correct calculation and the repercussions of error.

The book supports both self-guided study and the more traditional lecture-discussion format. Meet-
ing the needs of either approach, or of any approach in-between, is a matter not only of organizing the top-
ics logically, but also of liberally cross-referencing so that students see connections and common motifs. 
This technique promotes comprehension while lessening the burden of brute memorization.

The book includes online resources (www.myhealthprofessionskit.com) intended to meet the needs 
of advanced users: (1) chapter appendices, which elaborate topics introduced in the main text, and (2) 
advanced topics, which emerge from frequently asked questions and from the main text.

Because some instructors start their courses with a review of arithmetic, and because some students 
seek such a review, the first chapter deals with addition, subtraction, multiplication, division, fractions, 
decimals, percentages, algebra, and ratios. Furthermore, it includes strategies for speeding up calculations 
without relying on electronics. Subsequent chapters cover increasingly complex and specialized topics, 
with the online appendices carrying those topics to the greatest depth.

www.myhealthprofessionskit.com
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1 Arithmetic and Algebra

Chapter Outline
Key Terms  1

Addition  2

Subtraction  3

Multiplication  4

Division  5

Fractions  6

Percentages  12

Algebra  15

Ratios  20

Learning Objectives
At the end of this chapter, the student should be able to do the following:
 1. To add, subtract, multiply, and divide positive and negative numbers
 2. To multiply, divide, and reduce fractions
 3. To add and subtract fractions
 4. To express fractions as decimal numbers and to express improper fractions 

as mixed numbers
 5. To simplify complex fractions
 6. To interconvert percentages, decimal numbers, and fractions
 7. To calculate a specified percentage of a number
 8. To express change properly as a percentage
 9. To solve an equation algebraically for an unknown variable
10. To calculate and interpret ratios
11. To solve equations of two ratios for an unknown variable by cross-multiplication

Key Terms
associative property
canceling
commutative property
complex fraction
denominator
difference
distributive property
factor
improper fraction
least common denominator
mixed number

numerator
opposite
percentage
product
proper fraction
quotient
ratio
reciprocal
reducing
sum
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Arithmetic is the manipulation of numbers through addition, subtraction, multiplication, and division. 
Algebra is the strategic manipulation of relationships in order to find the unknown value of a certain 
quantity. In medical decisions, the importance of having reliable information is self-evident. Therefore, 
mastering the basic skills of arithmetic and algebra is critical to ensuring the accuracy of every result that 
leaves the laboratory.

ADDITION
In the problem

a + b = c

variable c is referred to as the sum of a and b.
In the operation of addition, positive numbers represent a “putting in” and negative numbers a 

“taking out.” Therefore, we regard a positive number and its negative counterpart as opposites. For 
example, the opposite of  “7” is “ -7,”  and the opposite of “ -200”  is “200.” Consequently, combining 
a positive number with a negative number amounts to a decrease. For example,

5 + (-3) = 2

A simple way to approach a problem like this is to refer to a number line. Adding a negative number 
is the same as moving leftward. In this case, we start at the “5” and then move to the left by “3,” which 
brings us to “2.”

0�4 �3 �2 �1 1 2 3 4 8765

Start here and then
move 3 to the left.

�2 � (�3) � �5

�2�6 �5 �4 �3 �1 0 1 2 6543

Start here and then
move 3 to the left.

Adding a negative number to a negative number follows the same rule, that is, a leftward movement:

To clarify this procedure with an analogy, envision a beaker of water on a tabletop. Let the number 
“1” be a unit of heat and the number “ -1”  be a unit of cold. Adding a positive number to another posi-
tive number puts units of heat into the water, causing the temperature to rise. Adding a negative number 
to a positive number, however, introduces units of cold to the water, bringing the temperature down.

Addition is commutative. In other words, the order in which we add two numbers together does 
not affect the sum. Thus, this equation shows the commutative property of addition, that is, adding a 
and b gives the same result as adding b and a:

a + b = b + a

For example,

3 + 6 = 6 + 3 = 9

and

-0.721 + 0.0044 = 0.0044 + (-0.721)
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The grouping of numbers in addition also does not affect the sum. This fact reflects the associative 
property of addition, meaning the sum of a and b plus c is equal to a plus the sum of b and c, as repre-
sented in this equation:

(a + b) + c = a + (b + c)

For example,
(2 + 8) + 5 = 2 + (8 + 5) = 15

and
(-1 + 9) + 3 = -1 + (9 + 3) = 11

CheCkpoint 1-1

 1. Evaluate the following expressions.

 (a) 16 + (-9) (b) (-4) + 10 (c) 1.7 + (-3.4) (d) (-58) + (-4)

 2. Evaluate the following expressions.

 (a) (-9) + 5 + (-2) (b) 13.5 + 0.2 + (-0.8)

 (c) 0.0556 + (-0.0102) + 0.0433 (d) (-128) + (-128) + 256

 1. (a) 7 (b) 6 (c) -1.7 (d) -62

 2. (a) -6 (b) 12.9 (c) 0.0887 (d) 0

CheCkpoint 1-2
Evaluate the following expressions.

 (a) 10 - (-2) (b) (-3) - 5 (c) 40 - 46 (d) (-18) - (-30)

 (a) 12 (b) -8 (c) -6 (d) 12

SUBTRACTION
In the problem

a - b = c

variable c is referred to as the difference between a and b.
Subtracting a positive number from a positive number is intuitive:

13 - 8 = 5

In fact, we define subtraction as the addition of an opposite:
a - b = a + (-b)

Subtracting a negative number from a positive number, however, may seem counterintuitive:
13 - (-8) = 21

Here, we are subtracting the opposite of 8 from 13. If we were subtracting 8 itself, then we would 
bring the total down to 5, that is, 13 - 8 = 5. Instead, we are subtracting a “taking out,” a process 
that amounts to a “putting in.” Therefore, subtracting a negative number has the same effect as adding 
its opposite:

13 - (-8) = 13 + 8 = 21

Our beaker-of-water analogy might prove helpful here. We can say that subtracting a negative 
is the same as withdrawing units of cold from the water, the result of which is an increase in the 
temperature.
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MULTIPLICATION
In the problem

a * b = c

variables a and b are called the factors, and variable c is referred to as the product of a and b.
Multiplication is a shortcut for addition:

6 * 4 = 24

What this operation does is to add together six fours or four sixes:
6 * 4 = 4 + 4 + 4 + 4 + 4 + 4 = 6 + 6 + 6 + 6 = 24

There are three common ways to symbolize multiplication:
a * b = a # b = ab

Like addition, multiplication is commutative. The order in which we multiply two numbers 
together does not affect the product:

a * b = b * a

For example,
6 * 5 = 5 * 6 = 30

The grouping of numbers in multiplication also does not affect the product. Thus, the associative 
property of multiplication is

(a * b) * c = a * (b * c)

For example,
(3 * 7) * 2 = 3 * (7 * 2) = 42

As in addition and subtraction, multiplying two positive numbers together makes sense. Equally 
logical, though, is multiplying a positive number by a negative number:

6 * (-4) = -24

What this operation does is to add together six negative fours or negative-six fours:

6 * (-4) = (-4) + (-4) + (-4) + (-4) + (-4) + (-4) = -24

(-6) * 4 = -24

What does it mean to add together negative-six fours? Fortunately, our beaker-of-water analogy is useful 
here, too. Regard the operation not as an addition of negative-six fours but as a subtraction of six fours, 
giving -24. In other words, we are subtracting four units of heat six times, for a total of 24 units of heat 
out of the water. The result is a lower temperature. Therefore, a negative times a positive is a negative.

Another way to approach this problem is to apply the commutative property of multiplication:

(-6) * 4 = 4 * (-6) = -24

Written as such, the problem tells us simply to add together four negative sixes:
4 * (-6) = (-6) + (-6) + (-6) + (-6) = -24

Finally, consider the multiplication of two negative numbers:
(-6) * (-4) = 24

To understand this, we can extend our analogy from above and treat the operation as a subtraction of six 
negative fours, giving 24. In other words, we are subtracting, or withdrawing, four units of cold six times, 
pushing the temperature up. Therefore, a negative times a negative is a positive.

Table 1-1 H summarizes the four possible sign combinations in multiplication.

Rule Analogy

positive * positive = positive Adding units of heat raises the temperature

positive * negative = negative Adding units of cold lowers the temperature

negative * positive = negative Subtracting units of heat lowers the temperature

negative * negative = positive Subtracting units of cold raises the temperature

H TABLe 1-1 The Four Sign Combinations in Multiplication
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DIVISION
In the problem

a , b = c  or  
a
b

= c

variable c is referred to as the quotient of a and b, that is, c is the result of dividing a by b.
We define division in terms of multiplication:

a , b = a # 1
b
  or  

a
b

= a # 1
b

The two quantities b and 1/b are reciprocals of each other. Reciprocals are two numbers whose 
product is 1:

b *
1
b

= 1

If a , b = c, then b * c = a. One important consequence of this relationship is a prohibition 
against dividing by zero. Division by zero is undefined because there are no values for a and c that satisfy 
this equation:

a
0

= c

If a, for example, is 25, then c does not exist, because there is no value for c that, when multiplied by zero, 
gives 25:

c * 0 ≠ 25

Of course, zero divided by any number is zero because any nonzero value for b satisfies these 
equations:

0
b

= 0  or  b * 0 = 0

Because we define division in terms of multiplication, the sign rules are the same. Table 1-2 H 
summarizes those rules.

CheCkpoint 1-3
Evaluate the following expressions.

 (a) 4 * 9 (b) 2 * (-6) (c) (-10) * 3 (d) (-5) * (-4)

 (e) 1.5(2) (f) 33 # (-3) (g) (-8)(-8) (h) (-4.04) # 2

 (a) 36 (b) -12 (c) -30 (d) 20

 (e) 3 (f) -99 (g) 64 (h) -8.08

Rule

positive , positive = positive

positive , negative = negative

negative , positive = negative

negative , negative = positive

H TABLe 1-2 The Four Sign Combinations in Division
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FRACTIONS
A fraction is nothing more than a representation of a division. The top number is the numerator and the 
bottom number is the denominator. The denominator specifies the number of equal parts into which 
we divide something, and the numerator specifies the number of those equal parts.

n FIgURe 1-1 A depiction of the equation 
2
3

*
3
4

=
6

12
. Two-thirds of 3/4 

is the same as 6/12. Panel A: Three-fourths of the circle is yellow. Panel B: This 
 represents 2/3 of 3/4: 2/3 (in green) of the original 3/4 (in green and in yellow). 
Panel C: Six-twelfths (in green) of the whole circle, which is the same as the green 
area in panel B.

A B C

CheCkpoint 1-4
Evaluate the following expressions.

 (a) 
18
-3

 (b) 2.4 , 0.3 (c) 
-160

-4
 (d) (-49) , 7

 (e) 5a 1
10

b  (f) 
0.54
-9

 (g) -35a1
7
b  (h) 25 , (-75)

 (a) -6 (b) 8 (c) 40 (d) -7

 (e) 0.5 (f) -0.06 (g) -5 (h) -0.33

4
1

4
1

4
1

4
1

In the above diagram, for example, we divide the circle into four equal parts, and each part is one of 
the four. For each part, therefore, the denominator is 4 and the numerator is 1.

As a division, the fraction “1�4” tells us that (1) we divided one whole thing (a circle in this case) into 
four equal parts, and (2) we are considering one of those parts.

Multiplying Fractions
To multiply fractions, multiply the numerators and multiply the denominators. For example,

2
3

*
3
4

=
6
12

What this equation tells us is that 2/3 of 3/4 is the same as 6/12. Figure 1-1 n depicts this relationship.
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Multiplying a fraction by a whole number is straightforward; just treat the whole number as a frac-
tion with “1” in the denominator. For example,

4
5

* 10 =
4
5

*
10
1

=
40
5

= 8

Dividing Fractions
To divide a fraction, multiply it by the reciprocal of the other number:

2
3

, 3 =
2
3

*
1
3

=
2
9

What these equations tell us is that dividing 2/3 of an object into three equal parts gives 2/9 of that object. 
For example, consider a circle (Figure 1-2 n).

n FIgURe 1-2 A depiction of the equations 
2
3

, 3 =
2
3

*
1
3

=
2
9

. Two-thirds 

divided by 3 is the same as 1/3 of 2/3, which equals 2/9. Panel A: Two-thirds of 
the circle is blue. Panel B: One-third (in purple) of the original 2/3 (in purple and in 
blue). Panel C: Two-ninths (in purple) of the whole circle, which is the same as the 
purple area in panel B.

A B C

CheCkpoint 1-5

 1. Evaluate the following expressions.

 (a) 
3
5

*
4
9

 (b) 
2
7

*
1
2

 (c) 
1
4

*
2
3

 (d) 25 *
4
5

 2. Evaluate the following expressions.

 (a) 
8
9

, 2 (b) 
1
2

,
3
5

 (c) 6 ,
2
3

  (d) 
3
7

,
4
7

 1. (a) 
12
45

 (b) 
2
14

 (c) 
2
12

 (d) 25 *
4
5

=
100
5

= 20

 2. (a) 
8
9

, 2 =
8
9

*
1
2

=
8
18

 (b) 
5
6

 (c) 9 (d) 
21
28

Reducing Fractions
Generally, fractions should be reduced (or “simplified”) so that the numerator and denominator are as 
small as possible, that is, until the only number evenly divisible into both of them is “1.”

Sometimes the reduction is comparatively easy to see, as in the following example.
2
4
 reduces to 

1
2
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In the fraction 
2
4

, the “2” divides evenly into the “4”; therefore, the “2” reduces to a “1” and the “4” reduces 

to a “2.”

Here is another simple example:

5
20
 reduces to 

1
4

The “5” divides evenly into the “20”; therefore, the “5” reduces to a “1” and the “20” reduces to a “4.”
In more complex reductions, it helps to write out the factors. Three examples follow.

 
18
32

=
2
2

*
9
16

= 1 *
9
16

=
9
16

 
9
15

=
3
3

*
3
5

= 1 *
3
5

=
3
5

 
16
64

=
16
16

*
1
4

= 1 *
1
4

=
1
4

Canceling
We can simplify operations on fractions by the shortcut known as canceling, which exploits simple 
reductions. For example, consider this problem and its long solution:

4
5

*
15
16

=
4 * 15
5 * 16

=
15 * 4
5 * 16

=
15
5

*
4
16

= 3 *
1
4

=
3
4

Now consider the same problem simplified by canceling:

41

15
*

153

416
=

1 * 3
1 * 4

=
3
4

The “4” in the numerator divides evenly into the “16” in the denominator; as a result, the “4” becomes a 
“1” and the “16” a “4.” We say that the “4” cancels out. Likewise, the “5” in the denominator divides evenly 
into the “15” in the numerator; accordingly, the “5” becomes a “1” and the “15” a “3.” We say that the “5” 
cancels out.

Here is another example:

71

216
*

81

321
=

1 * 1
2 * 3

=
1
6

CheCkpoint 1-6
Reduce the following fractions.

 (a) 
4
6

 (b) 
16
36

 (c) 
28
56

 (d) 
9
12

 (e) 
5
20

 (a) 
2
3

 (b) 
4
9

 (c) 
1
2

 (d) 
3
4

 (e) 
1
4

Adding and Subtracting Fractions
To add (or subtract) fractions, add (or subtract) the numerators but not the denominators.  Furthermore, 
the denominators must all be the same.

Consider the simple addition of 1/4 and 1/4, which is highlighted in pink in the diagram below.

1
4

+
1
4

=
2
4
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It is logical to add only the numerators together because we clearly have two-fourths of the circle. 
As Figure 1-3 n shows, adding the denominators would be meaningless: it is impossible to arrive at 
two-eighths by adding together 1/4 and 1/4. Therefore, adding or subtracting fractions requires a com-
mon denominator.

If two denominators are different, we must equalize them before addition or subtraction. To accom-
plish this, we find the least common denominator, which is the single lowest number into which each 
denominator divides evenly. For example, in the problem

2
3

+
1
4

the least common denominator is “12.” To prove this, we construct a chart of multiples:

Multiples of 3: 3 6 9 12 15 18 21

Multiples of 4: 4 8 12 16 20 24 28

Therefore, the addition problem above becomes

g

12
+

h
12

The next step is to find the numerators g and h that correspond to the new denominator:

2
3

=
g

12
  and  

1
4

=
h
12

In the first equation (for numerator g), the original denominator of 3 was multiplied by 4 to give the least 
common denominator of 12. Therefore, we also multiply the numerator by 4:

2
3

*
4
4

=
8
12

In the second equation (for numerator h), the original denominator of 4 was multiplied by 3. Therefore, 
we also multiply the numerator by 3:

1
4

*
3
3

=
3
12

Now we may perform the addition:

2
3

+
1
4

=
8
12

+
3
12

=
11
12

n FIgURe 1-3 Adding fractions entails adding the numerators but not the 
denominators. Clearly, the proportion of 2/4 (pink) is greater than the proportion 

of 2/8 (orange). Therefore, 
1
4

+
1
4

=
2
4

≠
2
8

.

4
1

4
1 8

1

8
1

4
1

4
1
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Figure 1-4 n illustrates this addition of fractions, showing that combining 2/3 with 1/4 gives the 
same fraction as 11/12.

CheCkpoint 1-7

 1. Evaluate the following expressions.

 (a) 
1
5

+
4
9

 (b) 
2
3

+
2
9

 (c) 
3
8

+
1
2

 (d) 
1
3

+
2
5

 2. Evaluate the following expressions.

 (a) 
3
4

-
1
2

 (b) 
6
7

-
8
9

 (c) 
4
5

-
2
3

 (d) 
1
2

-
1
4

 1. (a) 
9
45

+
20
45

=
29
45

 (b) 
8
9

 (c) 
7
8

 (d) 
11
15

 2. (a) 
3
4

-
2
4

=
1
4

 (b) 
-2
63

 (c) 
2
15

 (d) 
1
4

n FIgURe 1-4 An illustration of the equation 
2
3

+
1
4

=
11
12

, showing the need for 

a common denominator. The area of the circle covered by the addition of 2/3 (blue) 
and 1/4 (purple) is the same as the area covered by 11/12 (blue and purple).

3
2

12
8

4
1

12
3

12
11

� �

Expressing Fractions as Decimal Numbers
Because fractions are divisions, we may express them as decimals. For example, the fraction 

1
2

 is the 
same as 0.5:

1
2

=
0.5

2)1.0
 

This is consistent because 0.5 is the same as 5/10, which reduces to 1/2:

0.5 =
5
10

=
5
5

*
1
2

=
1
2
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Another example is 
3
5

, which is equal to 0.6:

3
5 =

0.6
5)3.0

 
Like the preceding decimal, this one is consistent because 6/10 reduces to 

3
5

 :

0.6 =
6
10

=
2
2

*
3
5

=
3
5

Improper Fractions
An improper fraction is one in which the numerator is greater than the denominator. This is the oppo-
site of a proper fraction, whose denominator is larger than its numerator. Any improper fraction has 
a value greater than 1, a fact that allows us to express it as a whole number with a proper fraction. This 
is called a mixed number.

An example of improper fractions is
18
5

Carrying out the division, we see that 5 goes into 18 three times, with a remainder of 3 (Figure 1-5 n). 
Accordingly, the equivalent mixed number is

18
5

= 3 +
3
5

= 3 
3
5

Another example is 
58
7

:

58
7

= 8 +
2
7

= 8 
2
7

Complex Fractions
A complex fraction is one in which the numerator and/or the denominator is itself a fraction. Simpli-
fying complex fractions is a matter of applying rules already articulated. Consider the following three 
examples.

n FIgURe 1-5 A depiction of the improper fraction 
18
5

 and its equivalent mixed number 3 
3
5

. Each wedge 

represents 1/5 of a circle. Clearly, 18/5 constitutes three whole circles and an additional 3/5 of another circle.

exAMPLe 1
2
3
n5

8

2
3

*
8
5

=
16
15

= 1 
1
15
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PeRCeNTAgeS
The usefulness and importance of percentages as a mathematical tool cannot be overstated. The term 
“per cent” comes from the Latin per centum, meaning “through a hundred.” A percentage represents a 
number of parts out of every 100 parts; it is symbolized by “%”.

Consider two simple examples. If four out of 100 patients test positive for human immunodefi-
ciency virus (HIV), then we say that 4% of the patients tested positive. If 52 out of every 100 persons are 
female, then we say that 52% are women.

The decimal equivalent of a percentage is the quotient itself. The following example shows that 25% 
is the same as 25 out of 100, which, in turn, is the same as 0.25, or twenty-five-hundredths:

25% =
25
100

= 0.25

exAMPLe 2

9¢12 - 6
10 , 2

≤
9 *

10 , 2
12 - 6

= 9 *
5
6

=
45
6

= 7 
3
6

= 7 
1
2

CheCkpoint 1-8

 1. Express the following fractions as decimal numbers (to two places).

 (a) 
3
7

 (b) 
2
3

 (c) 
4
5

 (d) 
1
6

 2. Express the following improper fractions as mixed numbers.

 (a) 
3
2

 (b) 
8
3

 (c) 
25
7

 (d) 
19
4

 3. Simplify the following complex fractions.

 (a) 
2
3
n 6

7
 (b) 18,2 � (14 * 2)

7  (c) 
48¢6
7
≤

 1. (a) 0.43 (b) 0.67 (c) 0.80 (d) 0.17

 2. (a) 1 
1
2

 (b) 2 
2
3

 (c) 3 
4
7

 (d) 4 
3
4

 3. (a) 
7
9

 (b) 2 
1
4

 (c) 56

exAMPLe 3

0.8
1
2

      0.8 *
2
1

= 1.6
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Therefore, to convert from a percentage to a decimal, divide the number by 100 and drop the “%” sign. 
To convert from a decimal to a percentage, multiply the number by 100 and add the “%” sign.

Percentages also give us a means of standardizing proportions when the total number of parts is 
not 100. For example, suppose that last year 240 of 2000 patient specimens tested positive for antibodies 
against Helicobacter pylori, the bacterium that causes gastric ulcers. Suppose that, in the preceding year, 
72 of 900 tested positive. In which year were there more positives out of every 100 specimens?

To answer this question, we recognize that for last year the result of 240 out of 2000 is a fraction:

240
2000

The same is true for the preceding year, with 72 out of 900:

72
900

To compare the two directly, therefore, we must set each denominator to 100 and then find the corre-
sponding numerator:

240
2000

=
?

100
 and 

72
900

=
?

100

The straightforward way to solve this problem is to perform the division and express the result as 
a percentage. For last year:

 
240
2000

=
0.12

2000)240.00
 

 0.12 = 12%

The decimal number “0.12” tells us that 12/100, or 12 out of 100, patient specimens last year tested positive 

for antibodies against H. pylori. The fraction 
12

100
 is the same as 12%. For the preceding year:

 
72
900

=
0.08

900)72.00
 

 0.08 = 8%

The decimal number “0.08” tells us that 8/100, or 8 out of 100, patient specimens the preceding year tested 

positive for antibodies against H. pylori. The fraction 
8

100
 is the same as 8%.

Solving Percentage Problems
In essence, percentage problems are multiplications. For example, when we ask what 20% of 300 is, we 
are asking what 20/100 of 300 is. That, in turn, is the same as asking how much we have after dividing 
300 into 100 equal parts and then taking 20 of those parts:

20% of 300 = 0.20 * 300 =
20
100

* 300 =
300
100

* 20 = 60

Consider the following examples.

exAMPLe 1

What is 25% of 400?

25% of 400 = 0.25 * 400 =
25
100

* 400 =
400
100

* 25 = 100
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Two Caveats
The first caveat is about the decimal point. It is easy to misplace it in a percentage calculation, especially 
when the percentage itself is less than 1. Remember that converting a percentage to a decimal num-
ber entails moving the decimal point two places to the left, that is, dividing the percentage by 100. For 
example, 0.1% of 5000 is

0.1% of 5000 = 0.001 * 5000 =
1

1000
* 5000 = 5

Notice that the decimal number of 0.001, which is the same as 0.1%, involves the thousandths place. 
Notice the pattern in the factors of 10, which the section on shortcuts discusses later:

exAMPLe 2

What is 72% of 0.663?

72% of 0.663 = 0.72 * 0.663 =
72
100

* 0.663 =
0.663
100

* 72 = 0.477

The second caveat concerns a common error among expressions of change reported as percentages. 
Consider this statement:

“Two years ago, our laboratory ran the test for varicella-zoster virus on 500 patient specimens. 
Last year, that number fell to 400. Thus, there was a 20% decrease.”

That conclusion is correct. The number of tests started at 500 but went down by 100. Therefore, the 
decrease itself is 20% of the starting number:

100
500

= 0.20 = 20%

Percentage of 5000 Decimal equivalent Fraction equivalent Numerical Value

100 1 1/1 (=  100/100) 5000

10 0.1 1/10 (=  10/100) 500

1 0.01 1/100 50

0.1 0.001 1/1000 (=  0.1/100) 5

0.01 0.0001 1/10,000 (=  0.01/100) 0.5

exAMPLe 3

The number “144” is 48% of what other number? let us call the unknown number 
“a.” Solving this problem requires understanding from the outset that

48% of a = 0.48 * a = 144

Therefore, dividing 144 by 0.48 reveals the value of a:

 a =
144
0.48

 a = 300

We check our result in the original equation:

 0.48 * 300 = 144

 144 = 144



chapter 1   •   arithmetic and algebra            15

Now consider this statement:

“Two years ago, 30% of the specimens we tested for varicella-zoster virus were positive. Last 
year, 50% were positive. Thus, there was a 20% increase in the number of positive results.”

This conclusion is wrong. There was not a 20% increase in the number of positive test results or in the 
percentages themselves.

Consider first the number of positive test results. Two years ago, that number was
30% of 500 = 0.30 * 500 = 150

Last year, however, the number of positive test results was
50% of 400 = 0.50 * 400 = 200

Clearly, the number of positive test results went up from 150 to 200, an increase of 50. Thus, relative to 
the starting number, the increase itself is actually

50
150

= 0.33 = 33%

We can say, then, that the number of positive test results increased by 33%, not by 20%.
Now consider the percentage values themselves. Of the specimens tested, 30% were positive 2 years 

ago, and 50% were positive last year. The percentage went up from 30 to 50, an increase of 20. However, 
relative to the starting percentage, the increase itself is actually

20
30

= 0.67 = 67%

We can say, then, that the percentage of test results that were positive increased by 67%, not by 20%. What 
we say instead is that there was an increase of 20 percentage points.

In summary, the accurate and meaningful way to articulate the change we observed above is that 
there was (a) a 33% increase in the number of positive results, and (b) an increase of 20 percentage 
points.

ALgeBRA
The practical purpose of algebra is to find the unknown value of some variable. The strategy behind 
this goal is two-fold: (1) to write a suitable mathematical equation that includes the target variable, and 
(2) to isolate the target variable on one side of the equation and the numbers on the other side.

In so doing, we apply two rules: (1) carry out the opposite of whatever operations appear on the 
same side as the target variable, and (2) maintain the equality by performing the same operation on each 
side of the equals sign.

For our first example, consider this simple equation with a variable, x, whose value is unknown:
x + 4 = 7

CheCkpoint 1-9

 1. Express the following as percentages.

 (a) 0.88 (b) 
1
4

 (c) 0.61 (d) 
3
10

 2. Express the following as decimal numbers.

 (a) 19.5% (b) 0.44% (c) 54.03% (d) 0.012%

 3. Evaluate the following expressions.

 (a) 20% of 400 (b) 63% of 0.932 (c) 0.5% of 1000 (d) 1% of 10

 1. (a) 88% (b) 25% (c) 61% (d) 30%

 2. (a) 0.195 (b) 0.0044 (c) 0.5403 (d) 0.00012

 3. (a) 80 (b) 0.587 (c) 5 (d) 0.1
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To isolate x on one side of the equation and the numbers on the other, we carry out the opposite of the 
operation that appears on the same side as x. Because 4 is added to x on the left side, we subtract it. But in 
order to maintain the equality, we subtract it also from the other side:

 x + 4 - 4 = 7 - 4

 x = 3

The next example involves multiplication:

3x = 18

Because x is multiplied by 3, we divide each side by 3:

 
3x
3

=
18
3

 x = 6

We next try an equation involving division:

x
9

= 5

Because x is divided by 9, we multiply each side by 9:

 
x
9

# 9 = 5 # 9
 x = 45

Now let us consider an equation involving more than one operation on x:

3x + 6 = 18

There are two operations on the left side of the equation: multiplication and addition. We perform their 
opposites, division and subtraction, but only one at a time. First, we subtract 6 from each side of the 
equation, giving

 3x + 6 - 6 = 18 - 6

 3x = 12

Next, we divide each side by 3:

 
3x
3

=
12
3

 x = 4

It is always wise to check the final result by substituting it into the original equation. In this case, we 
put “4” back into “3x + 6 = 18”;  our result is correct because it satisfies the equation:

 3(4) + 6 = 18

 12 + 6 = 18

 18 = 18

In our final example, we consider a more-complex equation:

1
2

 x - 10

5
= 30

On the left side of the equation, there is division by 5, subtraction of 10, and multiplication by 1�2. To 
isolate x, we perform their opposites. First, we multiply each side by 5:

 

1
2

 x - 10

5
# 5 = 30 # 5

 
1
2

 x - 10 = 150
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Second, we add 10:

 
1
2

 x - 10 + 10 = 150 + 10

 
1
2

 x = 160

Third, we multiply by 2:

 
1
2

 x # 2 = 160 # 2
 x = 320

Finally, we check our result in the original equation:

 

1
2

 (320) - 10

5
= 30

 
160 - 10

5
= 30

 
150
5

= 30

 30 = 30

Operational Properties
We have already seen the commutative and associative properties of addition and multiplication:

 Commutative property:  a + b = b + a

 a * b = b * a

 Associative property:      (a + b) + c = a + (b + c)

 (a * b) * c = a * (b * c)

Now we introduce the distributive property:

a(b + c) = ab + ac

We have distributed the variable a to the variables inside the parentheses, b and c. We can verify this 
property by assigning arbitrary values to the variables, and in doing so we see that the left and right sides 
of the equation are indeed equal:

 3(5 + 8) = 3(5) + 3(8)

 3(13) = 15 + 24

 39 = 39

Using the distributive property, let us now solve some equations algebraically.

exAMPLe 1

4(x + 8) = 48

There are two equally effective approaches to this problem.

Approach 1

Divide each side by 4, giving

 
4(x + 8)

4
=

48
4

 x + 8 = 12

(continued)
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next, subtract 8 from each side:

 x + 8 - 8 = 12 - 8

 x = 4

Approach 2

Apply the distributive property:

 4x + 4(8) = 48

 4x + 32 = 48

Then subtract 32 from each side:

 4x + 32 - 32 = 48 - 32

 4x = 16

in the final step, divide each side by 4:

 
4x
4

=
16
4

 x = 4

Check the result by substituting it back into the original equation:

 4(4 + 8) = 48

 4(12) = 48

 48 = 48

exAMPLe 2

2(x - 7)
4

= 2.5

There are three effective approaches to solving this problem, one of which involves the 
distributive property.

Approach 1

Multiply each side by 4:

 
2(x - 7)

4
* 4 = 2.5 * 4

 2(x - 7) = 10

Divide each side by 2:

 
2(x - 7)

2
=

10
2

 x - 7 = 5

Add 7 to each side:

 x - 7 + 7 = 5 + 7

 x = 12
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Approach 2

Reduce the fraction on the left side by canceling the “2” in the numerator:

 
2(x - 7)

4
= 2.5

 
1(x - 7)

2
= 2.5

 
x - 7

2
= 2.5

Then multiply each side by 2:

 
x - 7

2
* 2 = 2.5 * 2

 x - 7 = 5

Finally, add 7 to each side:

 x - 7 + 7 = 5 + 7

 x = 12

Approach 3

Multiply each side by 4 (the same step as in approach #1):

 
2(x - 7)

4
* 4 = 2.5 * 4

 2(x - 7) = 10

next, apply the distributive property:

 2x - 2(7) = 10

 2x - 14 = 10

Then add 14 to each side:

 2x - 14 + 14 = 10 + 14

 2x = 24

Finally, divide each side by 2:

 
2x
2

=
24
2

 x = 12

Check the result by substituting it back into the original equation:

 
2(12 - 7)

4
= 2.5

 
2(5)
4

= 2.5

 
10
4

= 2.5

 2.5 = 2.5
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exAMPLe 3

2(x + 9) + 3x = 14

notice that the variable x appears in two terms on the left side of the equation. Therefore, 
we must combine them in order to isolate x. Our first step, then, is to distribute the “2”:

 2x + 2(9) + 3x = 14

 2x + 18 + 3x = 14

Realize that 2x = x + x and that 3x = x + x + x. Therefore, our equation above becomes

 x + x + 18 + x + x + x = 14

 5x + 18 = 14

The next step is to subtract 18 from each side:

 5x + 18 - 18 = 14 - 18

 5x = -4

The final step is to divide each side by 5:

 
5x
5

=
-4
5

 x = -0.8

Checking the result in the original equation shows it to be correct:

 2(-0.8 + 9) + 3(-0.8) = 14

 2(8.2) + (-2.4) = 14

 16.4 - 2.4 = 14

 14 = 14

CheCkpoint 1-10
Solve each of the following equations for x.

 (a) 3x + 5 = 17 (b) 
x - 5

8
= 2 (c) 0.25x - 1 = 4

 (d) 
2
3

 x + 4 = 8 (e) 4(x + 1) = 56 (f) 
3(x - 5)

9
= -1

 (a) x = 4 (b) x = 21 (c) x = 20

 (d) x = 6 (e) x = 13 (f) x = 2

RATIOS
A ratio is a quotient of two numbers. It provides a convenient summary of how those two numbers 
compare with each other. The numerator and denominator may have the same units (e.g., minutes, 
grams, milliliters, dollars, milligrams per deciliter), or they may have different units, in which case the 
quotient is technically a rate. When saying “the ratio of a to b,” we mean this quotient:

a
b

Ratios figure prominently in laboratory calculations, especially those involving concentrations and 
dilutions, which later chapters in this book cover. Let us consider several examples now.
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exAMPLe 1

Automated instrument A takes 90 minutes to run the test for parathyroid hormone. Auto-
mated instrument B takes 40 minutes. What is the ratio of the time required to run the 
test on A to that on B? What does it mean mathematically?

90 min
40 min

= 2.25

The ratio of 2.25 tells us that instrument A takes 2.25 times as long as instrument B 
to run the test for parathyroid hormone. The division cancels out the units because 
they are the same in the numerator and denominator. notice that this ratio is also an 
improper fraction (a subject discussed earlier in the chapter), which we can convert to 
a mixed number:

90 min
40 min

=
9
4

= 2 +
1
4

= 2 
1
4

because 2.25 = 21�4, the two results and their interpretation are the same whether we 
ultimately call the quotient a “ratio” or an “improper fraction.”

exAMPLe 3

A reagent for a particular assay in your laboratory comes from the manufacturer in  powder 
form. You must reconstitute it in water before use. The instructions specify adding 3 mil-
liliters of water to 0.60 grams of powder. What is the ratio of the volume of water to the 
weight of powder? What does it mean mathematically?

3.0 milliliters
0.60 grams

= 5.0 milliliters/gram

What this ratio means is that every gram of powder requires 5 milliliters of water. This 
information would help us calculate the volume of water needed to reconstitute any 
amount of powder we might have at a given time. notice that, because the units in the 
numerator differ from those in the denominator, the division does not cancel them out; 
they appear in the quotient.

exAMPLe 2

On a given date, the number of platelets in a fixed volume of patient X’s blood was 
120. Three months later, after a course of drug therapy, the count was 480. What is 
the ratio of the count after therapy to the count before therapy? What does it mean 
mathematically?

480 platelets

120 platelets
= 4

After therapy, there were four times as many platelets in a fixed volume of patient X’s 
blood as there were before therapy. in other words, the ratio tells us that the count 
quadrupled.
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exAMPLe 4

The assay for a particular protein in plasma requires mixing 11 parts of reagent A with 
0.20 parts of reagent B. What is the ratio of the volume of reagent A to reagent B? What 
does it mean mathematically?

11 parts reagent A
0.20 parts reagent B

= 55 parts reagent A/part reagent B

This ratio tells us that each part of reagent B requires 55 parts of reagent A. As in example 
3 above, this information would help us calculate the volume of either reagent needed 
when we know the volume of the other.

Cross-Multiplication
Cross-multiplication is a technique for solving problems that equate two ratios. Although it is just a 
specific instance of the broader rules of algebra presented earlier, it is so useful that it deserves special 
attention.

Consider first a simple example in which we solve for an unknown, x:

2
3

=
x

18

In reading this equation, we say that 2 is to 3 as x is to 18. In other words, 2 has the same relationship to 
3 as x has to 18.

Applying the rules of algebra discussed earlier, we perform the opposite of the operation on x, and 
we do so on each side of the equation. In this case, therefore, we multiply by 18:

 
2
3

# 18 =
x

18
# 18

 
36
3

= x

 12 = x

Checking the final result by substituting it in the original equation verifies our algebra:

 
2
3

=
12
18

 
2
3

=
6
6

*
2
3

 
2
3

= 1 *
2
3

 
2
3

=
2
3

In cross-multiplication, we multiply the denominator on one side of the equation by the numerator 
on the other side and the numerator on one side by the denominator on the other:

2
3

=
12
18

This gives us
 2 * 18 = 3 * 12

 36 = 36
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Now let us use cross-multiplication to solve the same problem:

 
2
3

=
x

18

 2 * 18 = 3x

 36 = 3x

 
36
3

=
3x
3

 12 = x

Here is an example from the laboratory. Suppose an assay requires mixing 0.30 parts of reagent A 
with 7.0 parts of reagent B. If the number of patient specimens we have requires 0.52 parts of reagent A, 
how much reagent B must we use?

We know the ratio of the volumes of reagents A and B, and we know how much A we need in this 
run of the assay. So, the volume of B is our target:

0.30 parts reagent A
7.0 parts reagent B

=
0.52 parts reagent A

x

Cross-multiplying gives
 (0.30 parts A) # x = (7.0 parts B)(0.52 parts A)

 
(0.30 parts A) # x

0.30 parts A
=

(7.0 parts B)(0.52 parts A)

0.30 parts A

 x = (7.0 parts B)(1.73)

 x = 12.1 parts B

We can also use cross-multiplication to solve percentage problems. In fact, example 3 under “Solving 
Percentage Problems” employed this technique without identifying it as cross-multiplication. The question 
was this: 144 is 48% of what number? To set up the proper equation, we say that 48 is to 100 as 144 is to a:

48
100

=
144

a

Cross-multiplying gives
 48a = 144 * 100

 48a = 14,400

 a = 300

CheCkpoint 1-11

 1. Calculate each of the following ratios, including the units.

 (a) 
622 miles
38 gallons

 (b) 
49 bananas
21 bananas

 (c) 
2,400,000 red blood cells

4000 white blood cells
 (d) 

0.33 grams

2.64 grams

 2. Solve each of the following equations for x.

 (a) 
6
60

=
x

28
 (b) 

102
773

=
x

90
 (c) 

2
30

=
9
x

 (d) 
0.5
10

=
x

25

 3. Solve the following problems.

 (a) What is 24% of 330?

 (b) What is 66% of 0.827?

 (c) The number “5” is 40% of what other number?

 (d) The number “0.22” is 75% of what other number?

 1. (a) 16.4 miles/gallon (b) 2.3 (c) 600 red blood cells/white blood cell (d) 0.125

 2. (a) 2.8 (b) 11.9 (c) 135  (d) 1.25

 3. (a) 79.2 (b) 0.546 (c) 12.5 (d) 0.293
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Summary
 11. The two quantities b and 1/b are reciprocals of each other. 

The product of two reciprocals is 1:

b *
1
b

= 1

 12. Division by zero is undefined.
 13. Zero divided by any number is zero.
 14. A fraction is nothing more than the representation of a 

division. The top number is the numerator and the bottom 
number is the denominator.

 15. To multiply fractions, multiply the numerators and multiply 
the denominators.

 16. To divide a fraction, multiply it by the reciprocal of the other 
number.

 17. You have reduced fractions fully when the numerator and 
denominator are as small as possible, that is, when the only 
number evenly divisible into both of them is “1.”

 18. To add (or subtract) fractions, add (or subtract) the numera-
tors but not the denominators. Moreover, adding or sub-
tracting fractions requires a common denominator.

 19. An improper fraction is one in which the numerator is greater 
than the denominator. This is the opposite of a proper frac-
tion, whose denominator is larger than its numerator.

 20. A percentage represents a number of parts out of every 
100 parts; its symbol is “%”.

 21. To convert from a percentage to a decimal, divide the num-
ber by 100 and drop the “%” sign. To convert from a deci-
mal to a percentage, multiply the number by 100 and add 
the “%” sign.

 22. The practical purpose of algebra is to find the unknown 
value of some variable. The strategy is two-fold: (1) to write 
a suitable mathematical equation that includes the target 
variable, and (2) to isolate the target variable on one side 
of the equation and the numbers on the other side.

 23. Algebra has two practical rules: (1) carry out the opposite of 
whatever operations appear on the same side as the target 
variable, and (2) maintain the equality by performing the 
same operation on each side of the equals sign.

 24. The distributive property is shown in the equation

a(b + c) = ab + ac

 25. A ratio is a quotient of two numbers. it provides a conve-
nient summary of how those two numbers compare with 
each other.

 26. in cross-multiplication, we multiply the denominator on one 
side of the equation by the numerator on the other side and 
the numerator on one side by the denominator on the other.

 1. Arithmetic is the manipulation of numbers through addi-
tion, subtraction, multiplication, and division. Algebra is the 
strategic manipulation of relationships in order to find the 
unknown value of a certain quantity.

 2. A positive number and its negative counterpart are 
 opposites. Adding a negative number is the same as 
 subtracting its opposite, that is, moving leftward on the 
number line.

 3. The commutative property of addition is the fact that the 
order in which we add two numbers together does not 
affect the sum, as shown in this equation:

a + b = b + a

 4. The grouping of numbers in addition does not affect the 
sum. This fact reflects the associative property of addition, 
represented by the equation

(a + b) + c = a + (b + c)

 5. Subtracting a negative number has the same effect as add-
ing its opposite.

 6. There are three ways to symbolize multiplication:

a * b = a # b = ab

 7. Multiplication is commutative. The order in which we mul-
tiply two numbers together does not affect the product:

a * b = b * a

 8. The grouping of numbers in multiplication does not affect 
the product. Thus, the associative property of multiplica-
tion is

(a * b) * c = a * (b * c)

 9. Multiplication and division follow the same rules governing 
sign:

Rule

positive * or , positive = positive

positive * or , negative = negative

negative * or , positive = negative

 negative * or , negative = positive

 10. We define division in terms of multiplication:

a , b = a # 1
b

   or   
a
b

= a # 1
b
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Practice Problems
 1. (LO 1) Solve the following problems.

 (a) 6 + (-9) (b) -7 + 10

 (c) 6.5 - 8.5 (d) 33.9 + (-52.6)

 (e) 0.224 + 0.035 (f) 13.006 - 0.909

 (g) -125 - (-250) (h) -1.79 - 0.53

 (i) -219 + 221 (j) 0.00501 + (-0.00623)

 (k) 9701 + 330 (l) 72.2 - (-17.8)

 2. (LO 1) Evaluate the following expressions.

 (a) 2 * (-3.5) (b) -5 # 18

 (c) (-20)(-4) (d) 0.50 # 66

 (e) -7.1 * 3 (f) 183 * (-2)

 (g) -10 # (-33) (h) (0.0049)(-2)

 (i) 6600 # 0.25 (j) 1.5 * 0.3

 (k) -500 * (500) (l) (-10,000)(0.01)

 3. (LO 2, 4, 5) Evaluate the following expressions.

 (a) 18 , 9.1 (b) 10 *
3
4

 (c) 
0.492

-3
 (d) 

-50
-25

 (e) 3.6 , (-9) (f) 
7500

3

 (g) 
41

-0.7
 (h) 

1
4

 (-0.022)

 (i) 200 ,
1
2

 (j) 2.096 , (-4.192)

 (k) 
346
2�3

 (l) 
9�16

0.2

 4. (LO 2, 4, 5) Evaluate the following expressions. Express 
each answer as a reduced fraction or a mixed number.

 (a) 
1
4

*
3
5

 (b) 
6
7

* 10

 (c) 
3
4

,
1
2

 (d) 
2
5

, 7

 (e) -2 ,
8
9

 (f) 
4
16

n3
4

 (g) 
5
6

,
1
4

 (h) 7a1
3
b

 (i) 
9
10

, 2 (j) 
3�4

8

 (k) 
18�27

2�3
 (l) 

4000
4
5

 5. (LO 2, 3, 4) Evaluate the following expressions. Express 
each answer as a reduced fraction or a mixed number.

 (a) 
1
2

+
4
5

 (b) 
2
3

-
1
4

 (c) 2 
2
3

+
7
8

 (d) 
9
10

-
4
5

 (e) 1 
1
2

+
3
4

 (f) 
10
13

-
2
3

 (g) 10 
2
3

+ 1 
5
6

 (h) 
6
7

-
1
8

 (i) 
4
5

+
1
10

 6. (LO 4) Express the following fractions as decimal numbers.

 (a) 
2
3

 (b) 
4
5

 (c) 
7
8

 (d) 
2
5

 (e) 
1
4

 (f) 
7
28

 7. (LO 6) Complete the following table.

Percentage Decimal Number Fraction

12

0.04

3
4

0.91

0. 55

1
3

 8. (LO 7) Evaluate the following expressions.

 (a) 19% of 200 (b) 63% of 0.112

 (c) 0.7% of 88 (d) 110% of 60

 (e) 0.01% of 30,000 (f) 33% of 0.0174

 9. (LO 9) Solve each equation for x.

 (a) 2x - 13 = 6 (b) 
x
6

+ (-0.37) = 5

 (c) 120 + 6x = 138 (d) 5(x + 2) - 1 = 59

 (e) 
2

8(x + 4)
= 0.03125 (f) 

1
4

 x - 6.00 = -5.93

 10. (LO 11) Solve each equation for x.

 (a) 
46
12

=
x

36
 (b) 

0.33
7

=
3.3
x

 (c) 
450
81.2

=
x

29.2
 (d) 

1000
50

=
600

x

 (e) 
0.098
0.345

=
x

1.035
 (f) 

24
6

=
192

x
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Contextual Problems
 1. (LO 1, 9) The Friedewald formula provides a calculated 

estimate of the concentration of LDL cholesterol in serum, 
given three other measured concentrations:

 conc. of LDL cholesterol = (total conc. of cholesterol)

  - (conc. of HDL cholesterol)

  - a conc. of triglycerides

5
b

 where LDL is low-density lipoprotein and HDL is high-
density lipoprotein. Each concentration has units of “mil-
ligrams per deciliter,” symbolized by “mg/dL.”

 (a) compute the concentration of ldl cholesterol when 
the total concentration of cholesterol is 190 mg/dl, the 
concentration of hdl cholesterol is 36 mg/dl, and the 
concentration of triglycerides is 288 mg/dl.

 (b) compute the concentration of ldl cholesterol when 
the total concentration of cholesterol is 260 mg/dl, the 
concentration of hdl cholesterol is 22 mg/dl, and the 
concentration of triglycerides is 317 mg/dl.

 (c) Compute the total concentration of cholesterol when 
the concentration of ldl cholesterol is 101 mg/dl, the 
concentration of hdl cholesterol is 46 mg/dl, and the 
concentration of triglycerides is 150 mg/dl.

 (d) Compute the concentration of triglycerides when the 
total concentration of cholesterol is 208 mg/dl, the con-
centration of ldl cholesterol is 129 mg/dl, and the con-
centration of hdl cholesterol is 59 mg/dl.

 2. (LO 10, 11) You are running an assay that requires prepa-
ration of the working reagent by mixing stock reagent A 
with stock reagent B in a ratio of 0.5 to 3. Each patient 
specimen requires 0.10 volumes of stock reagent A. If you 
have 23 patient specimens, calculate the volume of stock 
reagent B you need.

 3. (LO 2, 7) Your laboratory is conducting an experiment, 
for which you have been saving patient specimens. There 
are 624 specimens in all. You randomly select 1/3 of the 
specimens to run on your automated instrument (group 1). 
Another 1/3 you ship to a laboratory out of state to be run 
on their instrument (group 2). The final third, however, you 
must divide in half; 1/2 remains in storage (group 3) and 
the other half undergoes a different test in your laboratory 
(group 4).

 (a) if 1/4 of the specimens in group 4 are not useable 
because of clotting, how many good specimens remain 
in that group?

 (b) Three-eighths of the group 2 specimens give uninterpre-
table results in their test. How many specimens does this 
represent?

 (c) To confirm the results, you decide to rerun a randomly 
selected 25% of the specimens in group 1. How many 
specimens does this represent?

 4. (LO 1) The hematocrit is the volume of whole blood occu-
pied by packed red blood cells (RBCs). To ascertain this 
value, blood is loaded into a capillary tube and centrifuged; 
the resulting volume taken by the RBCs is expressed some-
times as a percentage of the total volume. The hemoglobin 
concentration should be three times the RBC count, and 
the hematocrit should be three times the hemoglobin con-
centration plus or minus 3:

 hemoglobin = RBC count * 3

 hematocrit = (hemoglobin * 3) { 3

 These relationships are collectively called the “rule of 3,” 
a quick way for the hematology technologist or the physi-
cian to check results for the presence of errors and of a 
disease state. In performing these calculations, we use the 
numbers only and we ignore the units. For example, the 
following data satisfy the rule of 3:

 RBC count = 4.1 hemoglobin = 12.3 hematocrit = 37

 (a) Do the following data satisfy the rule of 3?

 RBC count = 4.8 hemoglobin = 13.6 hematocrit = 45

 (b) Do the following data satisfy the rule of 3?

 RBC count = 5.1 hemoglobin = 15.3 hematocrit = 46

 (c) in order to satisfy the rule of 3, what should the value of 
the rbc count be?

hemoglobin = 14.0  hematocrit = 41

 5. (LO 7) Albumin is one of many plasma proteins. It has 
various physiological roles, including the maintenance of 
osmotic pressure and the transport of fatty acids, hor-
mones, vitamins, and other substances. The concentra-
tion of albumin is normally between 3.4 and 5.0 grams per 
deciliter (g/dL). When outside that range, a disease may 
be present.

  Consider a patient specimen. If albumin is 56.0% of the 
total plasma protein, and if the concentration of total 
plasma protein is 7.0 g/dL, then does the albumin concen-
tration in this specimen fall within the expected range?

 6. (LO 7) The concentration of glucose in cerebrospinal fluid 
(CSF) is usually 60–75% of the concentration in plasma. A 
concentration below this range is consistent with menin-
gitis and other diseases of the central nervous system.

  Consider a patient whose plasma glucose concentration is 81 
milligrams per deciliter (mg/dL). If the CSF glucose concen-
tration is 54 mg/dL, does it fall within the expected range?

 7. (LO 1, 7, 8, 9) If a whole blood specimen is allowed to 
stand, the cells metabolize glucose at such a rate that its 
concentration decreases 7% in 1 hour. Consider a whole 
blood specimen that has been standing on a bench for an 
hour since it was drawn. If the plasma glucose concentra-
tion of that sample is 61 milligrams per deciliter (mg/dL), 
approximately what was its value at the time of collection?
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Appendix 
Mind Over Calculator: A Few Tips for Calculating Without Electronics

In the clinical laboratory, as in all of science and technology, it is not only possible, but also easy, to 
depend too much on calculators. The laboratorian must be poised to (1) catch his or her own errors, as 
well as those of colleagues, supervisors, trainees, nurses, physicians, and anyone else who does something 
that results in a calculation; (2) estimate numbers in order to follow technical papers or presentations 
and to save time and money in the laboratory; and (3) notice anomalies in test results in order to detect 
instrument malfunctions or procedural mistakes.

This appendix offers some strategies for carrying out mental calculations—without a calculator—
whether the goal is an accurate value or just a rough estimate. In every case, the key is to look for relation-
ships among the numbers that might simplify the arithmetic.

ADDITION AND SUBTRACTION PROBLeMS

 8. (LO 2, 3, 4, 6, 8) Your laboratory uses the solvent acetoni-
trile in its assays involving the technique of high-pressure 
liquid chromatography (HPLC). For today’s run, you can 

  see that you will need 
3
4

 of the acetonitrile currently in the 

  bottle. However, a colleague from another laboratory bor-
rows half of your acetonitrile for his own HPLC, leaving the 
other half with you.

 (a) He uses 
1
3

 of what he borrowed and returns the 

  remainder to you. between your half and what he 
returns to you, do you have enough acetonitrile for 
today’s run?

 (b) What your colleague returns to you is 1/5 of the amount 
that was in the bottle before he borrowed it. between 
your half and the 1/5 he is returning, do you have enough 
acetonitrile for today’s run?

 (c) Your laboratory’s consumption of acetonitrile in the last 
6 months (period 2) was 4.6 liters (l), an increase of 30% 
over the preceding 6 months (period 1). How much ace-
tonitrile did your laboratory consume in period 1?

 9. (LO 10, 11) Your laboratory’s chromatographic assay for 
a certain drug uses a solvent that is prepared by mixing 
400 milliliters (mL) of methanol with 90 mL of water.

 (a) You discover that you have only 320 ml of methanol in 
stock. What volume of water should you mix with it to 
prepare the solvent?

 (b) Your colleague prepared the solvent by mixing 600 ml 
of methanol with 135 ml of water. is that ratio correct?

 (c) in an experiment she wants to carry out, your laboratory 
director has asked you to double the ratio of methanol 
to water. For this experiment, how much water should 
you mix with 500 ml of methanol?

exAMPLe 1

21 + 58 − 6 + 33 = ?

For a rough estimate, rounding off is an effective start. Recognize 21 as being close to 
20, 58 close to 60, and 33 close to 30.

20 + 60 + 30 = 110

Then subtract the 6:

110 - 6 = 104

This is close to the exact answer of 106.
To get the exact answer instead, break the problem into two simpler problems: the 

first one combining the tens and the second one combining the ones. Then bring the 
two results together.

21 + 58 − 6 + 33

20 + 50 + 30 = 100  and  1 + 8 - 6 + 3 = 6

100 + 6 = 106
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exAMPLe 2
2253
3677

 + 6014
?

Rough estimate

The thousands place makes the sum at least 11,000 (2000 + 3000 + 6000). This may be 
close enough for some purposes. if not, continue to the next step.

More-refined estimate

The hundreds place adds 800 more (200 + 600), bringing the sum to at least 11,800. if 
this estimate is still not satisfactory, continue.

even-more-refined estimate

The tens place adds 130 more (50 + 70 + 10), bringing the sum to at least 11,930. This 
is close to the correct sum of 11,944.

exact sum

To the sum in the step above, just add the ones:

11,930 + (3 + 7 + 4)

11,930 + 14

11,944

exAMPLe 3
31.8
14.2

 + 70.6
?

For the exact sum, use the same strategy as in example 1 above: break the problem into three 
simpler problems, one for each place (tens, ones, tenths). Then combine the three results.

 Tens Ones Tenths

30 + 10 + 70 and 1 + 4 + 0 and 0.8 + 0.2 + 0.6

110 + 5 + 1.6 = 116.6

For a close estimate of the sum, round the numbers off:

32
14

 + 71
?

next, as above, break the problem into two simpler problems: the first one combining 
the tens and the second one combining the ones. Then bring the two results together.

 30 + 10 + 70 = 110  and  2 + 4 + 1 = 7

110 + 7 = 117



chapter 1   •   arithmetic and algebra            29

exAMPLe 2

81 : 6 = ?

Use the same strategy as in example 1 above. This problem is

(6 * 80) + (1 * 6)

480 + 6

486

exAMPLe 3

103 : 13 = ?

break this problem down into

(100 * 13) + (3 * 13)

1300 + 39

1339

MULTIPLICATION PROBLeMS

exAMPLe 1

46 : 9 = ?

To arrive at the product, just remember the essence of multiplication. This particular 
problem consists of nine forties with an additional six nines:

40 + 40 + 40 + 40 + 40 + 40 + 40 + 40 + 40 + 9 + 9 + 9 + 9 + 9 + 9

9 * 40         6 * 9

in other words, 46 * 9 is

(9 * 40) + (6 * 9)

360 + 54

414

42 : 5 : 3

 (40 * 5) + (2 * 5)
 200 + 10

= 210

 210 : 3

 (200 * 3) + (10 * 3)
 600 + 30

= 630

exAMPLe 4

42 : 15 = ?

This multiplication is the same as the following.
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exAMPLe 5

0.30 : 250 = ?

This problem breaks down to

0.1 * 3 * 250 =
1
10

* 3 * 250

Therefore, it is possible to take either of two approaches.

Approach 1

Take 1/10 of 250, which is 25, and then multiply by 3:

 
1
10

* 250 = 25

 25 * 3 = 75

Approach 2

Multiply 250 by 3, which is 750, and then divide by 10:

 250 * 3 = 750

 
750
10

= 75

exAMPLe 6

482 : 56 = ?

Rough estimate

Start by rounding off the numbers to 500 and 60:

 500 * 60

 50 * 10 * 6 * 10

300 * 100

30,000

More-refined estimate

To get a bit closer, recognize 56 as being about halfway between 50 and 60. So, multiply 
500 by 50 and then split the difference with the rough estimate from above:

500 * 50 = 25,000

The product is about halfway between 25,000 and 30,000, which is 27,500, closer to the 
exact answer (26,992).
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exAMPLe 8

0.033 : 0.12 = ?

You may rewrite this problem:

33 *
1

1000
* 12 *

1
100

33 * 12 *
1

100,000

Consequently, using the strategy in example 3 or 4 above, multiply 33 by 12 and then 
move the decimal point five places to the left; the result is 0.00396.

For a rough estimate, however, round 33 down to 30 and multiply by 12:

30 * 12 = 360

now, to divide by 100,000, move the decimal point five places to the left:

0.00360

180 + 15 = 195

exAMPLe 7

290 : 0.65 = ?

To solve this problem exactly (188.5), use the strategy in example 5 above. For a rough 
estimate, however, begin by rounding off 290 to 300 and then breaking the problem down:

300 * 0.65

300 * (0.60 + 0.05)

now apply the distributive property of multiplication:

(300 * 0.60) + (300 * 0.05)

Realize that 0.60 is the same as 
60%, which is six times 10%:

10% of 300 = 0.10 * 300 = 30

6 * 30 = 180

Realize that 0.05 is the same as 
5%, which is half of 10%:

10% of 300 = 0.10 * 300 = 30

5% of 300 =
30
2

= 15

DIVISION PROBLeMS

exAMPLe 1

480 ÷ 30 = ?

This problem breaks down to

480
10 * 3

=
480
10

*
1
3

First, 
480
10

= 48. Then, 
48
3

= 16.
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exAMPLe 2

240
0.6

= ?

Apply the rule of multiplying by the reciprocal:

240 *
10
6

First, multiply 240 by 10 and then divide by 6:

 240 * 10 = 2400

 
2400

6
= 400

exAMPLe 3

834
3.2

= ?

Round 834 to 830 and 3.2 to 3. Then, break the problem down:

830
3

=
800 + 30

3
=

800
3

+
30
3

250 + 10 = 260

This is very close to the exact quotient of 260.625.

This quotient is between 250 (3 * 250 = 750)  
and 300 (3 * 300 = 900), though closer to 250. 
Thus, round it off to 250.

This quotient is 10.

exAMPLe 1

20% of 380 = ?

Recognize 20% as 2 * 10%. because 10% of 380 is 38, 20% is twice that number, or 76.

PeRCeNTAge PROBLeMS

exAMPLe 2

15% of 440 = ?

Recognize 15% as being 10% plus another 5%:

15% of 440 = 0.15 * 440 = (0.10 * 440) + (0.05 * 440)

So, 10% of 440 is 44. the additional 5% is half of whatever 10% happens to be. half of 
44 is 22. Therefore, add 44 and 22 together, and the result is 15% of 440, or 66.
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exAMPLe 4

9.4% of 660 = ?

Round 9.4% off to 10%—an easier number to manage. Thus, 10% of 660 is 66, which may 
suffice as a rough estimate of the exact answer, which is 62.04. To get closer, though, 
there are several alternatives.

Alternative 1

Take 9% of 660, but that does not lend itself to fast computation. So, recognize 9% as 
being 1 percentage point less than 10%:

10% of 660 - 1% of 660 = 9% of 660

but how much is 1% of 660? We recognize 1 as being 1/10 of 10:

1 = 0.1 * 10

Thus, 1% of 660 is 1/10 of whatever 10% of 660 happens to be.

1% of 660 = 0.1 * (10% of 660)

because 10% is 66, 1% is 6.6:

1% of 660 = 0.1 * 66

 = 6.6

For convenience, round 6.6 up to 7. Then subtract 7 from 10%, which is 66, and the result 
is 59:

 66 d This is 10% of 660.

 -7 d This is about 1% of 660.

 59 d This is about 9% of 660.

not surprisingly, 59 is a bit closer to the exact answer than is 66.

Alternative 2

Subtracting 1 percentage point from the 10% value is too much because 9.4% is closer 
to 9.5% than it is to 9.0%. So, let us go from 10% down to 9.5%. in other words, instead 
of subtracting 1 percentage point from 10%, let us subtract only half a percentage point. 
because, as we calculated above, 1 percentage point is 6.6, then half a percentage point 
is 3.3, which is close to 3. So, we subtract 3 from 66:

 66 d This is 10% of 660.

 -3 d This is about 0.5% of 660.

 63 d This is about 9.5% of 660.

The result, 63, is even closer to the exact answer.

Alternative 3

Take 1% of 660 and then multiply it by 9. Thus, 1% of 660 is 6.6, which is close to 7. Then, 
9 * 7 is 63, the same result as that from alternative 2.

exAMPLe 3

63% of 2000 = ?

recognize 2000 as being twice 1000, which is an easy number to manage. next, 63% of 
1000 is 630. Therefore, 63% of 2000 is simply twice that number, or 1260.

63% * 1000 * 2 = 0.63 * 1000 * 2 = 630 * 2 = 1260



34            chapter 1   •   arithmetic and algebra

Go to www.myhealthprofessionskit.com <http://www.myhealthprofessionskit.com/> to access the  
Companion Website created for this textbook. Simply select  “Clinical  Laboratory Science” from the choice 
of disciplines. Find this book and log in using your username and  password to access additional practice 
problems, answers to the practice and contextual problems,  additional information, and more.

PEARSON

www.myhealthprofessionskit.com
http://www.myhealthprofessionskit.com/


2 Exponential Notation 
and Logarithms

Chapter Outline
Key Terms  35

Exponents and Logarithms  36

Negative Exponents  37

Exponential Notation (Scientific  
Notation)  37

Algebraic Rules for Exponents  39

Algebraic Rules for Logarithms  39

The Logarithmic Scale  41

Logarithmic Transformation of Ratios  43

The Natural Logarithm  44

The Usefulness of Logarithms  45

Learning Objectives
At the end of this chapter, the student should be able to do the following:
 1. Explain the usefulness of exponential notation and logarithms
 2. Write, evaluate, and interconvert exponential and logarithmic expressions; 

transform integers and decimal numbers into logarithms and back; and 
execute calculations involving exponents and logarithms

 3. Use positive and negative exponents and exponential notation
 4. Select and apply algebraic rules for exponents and logarithms
 5. Compare and contrast logarithmic and arithmetic scales
 6. Exploit the advantages of logarithmic scales
 7. Plot and interpret logarithmic scales
 8. Explain the benefits of transforming data into logarithms
 9. Use natural logarithms and explain their relationship to base-10 logarithms

Key Terms
antilogarithm
argument
arithmetic scale
base
common logarithm
e
exponent
exponential notation

exponential term
logarithm
logarithmic scale
natural logarithm
scientific notation
semilogarithmic plot
significand



36            chapter 2   •   exponential notation and logarithms

As we noted in the previous chapter, multiplication is a shortcut for addition. For example, the operation 
“3 * 4”  represents the addition of three fours or of four threes:

3 * 4 = 4 + 4 + 4 = 3 + 3 + 3 + 3 = 12

Now we introduce exponentiation as a shortcut for multiplication. For example, the operation “34”  
represents the multiplication of four threes:

34 = 3 * 3 * 3 * 3 = 81

In a similar sense, logarithms offer a shortcut for expressing numbers exponentially, while 
 reducing multiplication and division down to addition and subtraction. Since their invention by 
John Napier in 1614, logarithms have firmly established themselves not only as objects of theoretical 
interest but also as powerful tools for practical mathematicians, a group that includes laboratorians 
 (technologists, scientists, technicians, etc.). Thus, there are sound reasons for understanding exponents 
and logarithms. The following are five situations in which they are used; the reasons for their usefulness 
are covered later.

 1. Analytical spectroscopy—a paramount technique in the clinical laboratory—is based on the absor-
bance of light by the substance being quantified. The equations of this technique involve exponents 
and logarithms.

 2. Exponents and logarithms appear in the equations describing first-order processes. These include 
(a) radioactive decay, which pertains to radioimmunoassay, (b) some chemical reactions exploited 
in manual or automated assays, and (c) the elimination of some drugs from the blood, important in 
therapeutic drug monitoring.

 3. The growth of bacterial cultures is exponential, and some of the equations involve logarithms.
 4. We express the acidity of blood, urine, and other aqueous solutions as pH, which is a logarithmic 

quantity. Moreover, we capture the strength of an acid or base in the value of its pK, which is also 
logarithmic.

 5. Some diagnostic tests, such as viral loads and hormone levels, either express the results as logarithms 
or use logarithms to compute the results.

ExponEnts and Logarithms
Consider this equation:

104 = 10,000

What this means is that the number “10” multiplied by itself four times is the same as the number 
“10,000”:

10 * 10 * 10 * 10 = 10,000

The term “104”  in Equation 1 is read as “ten to the fourth,” “ten to the fourth power,” or “ten to 
the power of four.”

In Equation 1, the number “10” is the base and “4” is the exponent:

 Equation 1

 Equation 2

 Equation 3

Therefore, we call “4” the “logarithm of 10,000 to the base 10.” In other words, “4” is the exponent 
to which 10 must be raised to give 10,000. We write this relationship as

log10 10,000 = 4

Inversely, we call “10,000” the “antilogarithm of 4 to the base 10.” In other words, “10,000” is the 
result of raising 10 to an exponent of 4. We write this relationship as

antilog10 4 = 10,000

The general equation, then, is
bn = x

104 = 10,000

Base Exponent
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where b is the base and n is the exponent. Like Equation 1, we call this the exponential form of the rela-
tionship. Like Equation 2, however, the logarithmic form of the relationship has this equation:

logb x = n

in which x is called the argument of the logarithm. Thus, Equations 3 and 4 give the same information 
but in different forms.

When the base is 10, we often omit the subscript from the notation. Thus, log10 x = n is the 
same as log x = n. Base-10 logarithms are also called common logarithms to distinguish them from 
natural logarithms (see below).

Be aware, though, that the base is not restricted to a value of 10. For example, 25 = 32, which in 
logarithmic form is log2 32 = 5. The logarithm of 32 to the base 2 is 5, meaning that “5” is the exponent 
to which 2 must be raised to give 32:

25 = 2 * 2 * 2 * 2 * 2 = 32

Likewise, 63 = 216. In logarithmic form, this is
log6 216 = 3

ChECkpoint 2-1
 1. in exponential form, write this relationship: log10 100,000 = 5.

 2. in logarithmic form, write this relationship: 28 = 256.

 3. Evaluate the following logarithms.

 (a) log10 100 (b) log3 27 (c) log5 625 (d) log2 8

 4. Evaluate the following antilogarithms.

 (a) antilog10 3 (b) antilog10 6 (c) antilog2 5 (d) antilog4 3

 1. 105 = 100,000

 2. log2 256 = 8

 3. (a) 2 (b) 3 (c) 4 (d) 3

 4. (a) 1000 (b) 1,000,000 (c) 32 (d) 64

 Equation 4

nEgativE ExponEnts
All the exponents in the previous section are positive, and their interpretation is clear: the exponent is 
the number of times we multiply the base by itself. But there are also negative exponents, and their inter-
pretation at first may not make sense: how do we multiply the base by itself a negative number of times?

The answer is that a negative exponent symbolizes the reciprocal of the base that has been raised 
to the positive exponent:

b-n =
1
bn

Consider the number 10-3, for example:

10-3 =
1

103 =
1

1000
= 0.001

Likewise, the number 10-8 is

10-8 =
1

108 =
1

100,000,000
= 0.00000001

ExponEntiaL notation (sciEntific notation)
Whether the exponent is positive or negative, working with a base of 10 is bothersome when a large 
number of zeros is involved. After all, who wants to write “1,000,000,000,000” when “1012”  is so much 
faster? Moreover, miscounting zeros is a pitfall when writing out numbers that contain many of them. 
When dealing with simple powers of 10, therefore, use the following two rules for converting between 
integers or decimal numbers and their shorter exponential equivalents.
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 1. A positive exponent is the number of zeros following the “1.” A positive exponent is the 
number of places we move the decimal point to the right of the “1.” For example, 106, which is 
10 * 10 * 10 * 10 * 10 * 10, equals 1,000,000. The exponent is “6,” and there are six zeros 
after the “1,” which means we moved the decimal point six places to the right of the “1.” Similarly, the 
number 102 is 100, with two zeros after the “1”; the decimal point was moved two places to the right 
of the “1.” The number 109 is 1,000,000,000. Reasoning from the integer to the exponential form, we 
see that 1,000,000 is the same as 106, and 1000 is 103.

 2. A negative exponent is the number of decimal places in the number. A negative exponent is the 
number of places we move the decimal point to the left of the “1.” For example, 10-3, which is the 
same as 1/103, equals 0.001. The exponent is “ -3,”  and there are two decimal places preceding the 
“1,” which means that we moved the decimal point three places to the left of the “1.” Similarly, 10-1 
is 0.1, with only one decimal place; the decimal point was moved one place to the left of the “1.” The 
number 10-8 is 0.00000001. Converting from the decimal number to the exponential form, we see 
that 0.000001 is 10-6, and 0.01 is 10-2.

ChECkpoint 2-2
 1. Write the exponential equivalent of 10,000,000,000.

 2. Write the exponential equivalent of 0.00000000001.

 3. Write 104 as an integer.

 4. Write 10-5 as a decimal number.

1. 1010 2. 10-11 3. 10,000 4. 0.00001

The above two rules are natural consequences of the fact that, in multiplying any number by 10, 
we just move the decimal point one place to the right. This is the same as adding a zero to the right (e.g., 
6 * 10 = 60; 443 * 10 = 4430). On the other hand, in dividing any number by 10, we just move the 
decimal point one place to the left (e.g., 30 , 10 = 3; 6280 , 10 = 628).

We have, therefore, a standard way of expressing any integer or decimal number in exponential 
form, whether or not it is a multiple or submultiple of 10 and whether or not it is a simple power of 10. 
Called exponential notation (or scientific notation), this facility brings welcome relief from having 
to write out the very large and very small numbers so common in science and technology. We use the 
following two rules for converting numbers into exponential notation.

 1. To express any number greater than 1 in exponential notation, move the decimal to the left 
until the number has a value between 1 and 10. Then, append “* 10b,” where b is the number of 
places you moved the decimal. For example, when expressed in exponential notation, the number 
1,280,000,000 becomes 1.28 * 109. Realize what this notation means: simply that multiplication of 
1.28 by 109 gives 1,280,000,000. Thus, these are just two different ways of expressing the same value, 
but one of them has seven zeros whereas the other has only one. Another example is 766,000,000,000, 
which in exponential notation becomes 7.66 * 1011.

 2. To express any number less than 1 in exponential notation, move the decimal to the right until 
the number has a value between 1 and 10. Then, append “* 10-b,” where b is the number of places 
you moved the decimal. Therefore, when expressed in exponential notation, the number 0.0000035 
becomes 3.5 * 10-6, and the number 0.0000000000044 becomes 4.4 * 10-12.

Thus, the standard format for exponential notation comprises two parts. One is the significand 
and the other is the exponential term:

2.649 * 109

Significand Exponential Term



chapter 2   •   exponential notation and logarithms            39

ChECkpoint 2-3

 1. Write each of these numbers in exponential notation:

 (a) 4,500,000 (b) 887,000,000,000 (c) 500,100,000,000,000

 2. Write each of these numbers in exponential notation:

 (a) 0.00000223 (b) 0.00019 (c) 0.00000000007002

 1. (a) 4.5 * 106 (b) 8.87 * 1011 (c) 5.001 * 1014

 2. (a) 2.23 * 10-6 (b) 1.9 * 10-4 (c) 7.002 * 10-11

aLgEbraic ruLEs for ExponEnts
There are several algebraic rules that simplify calculations involving exponents and logarithms. Let us 
examine those for exponents first.

 bmbn = b(m+n)

 
bm

bn = b(m-n)

 (bc)n = bncn

 ab
c
b

n

=
bn

cn

 (bm)n = bmn

 bm/n = (bm)1/n = (b1/n)m

The usefulness of these rules becomes clear in an example. Suppose you had to calculate the 
product of 103 and 105. The direct approach, of course, is to multiply 1000 by 100,000, giving 
100,000,000; effective though it is, this method is inconvenient because of the eight zeros. A sim-
pler approach, given that the two bases are the same, is to use the “product rule” in the list above: 
103 * 105 = 10(3 + 5) = 108.

Similarly, evaluating (33)3 may be accomplished by either (a) raising 27 to the 3rd power, or  
(b) invoking the “power rule” in the list above and raising 3 to the 9th power, that is, 3(3 * 3). Either 
approach gives an answer of 19,683.

aLgEbraic ruLEs for Logarithms
We now turn our attention to the rules for logarithms.

 log xy = log x + log y

 logax
y
b = log x - log y

 log xn = n log x

We define any base raised to the power of zero as “1”:
b0 = 1

Therefore, the logarithm of 1 for any base is 0:
logb 1 = 0

Note that, whereas a logarithm can have the value “0,” the number “0” itself does not have a logarithm; the 
logarithm for 0 is said to be undefined because there is no value of n that satisfies this equation:

bn = 0

“Product Rule” 
for Exponents

“Power Rule”

“Product Rule” 
for Logarithms
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Any base raised to the power of 1 is defined as the base itself:
b1 = b

For any base, therefore, the logarithm of the base itself is 1:
logb b = 1

Finally, there is the rule that captures the very essence of logarithms:
logb bx = x

In words, this equation states that x is the exponent to which the base b must be raised to give bx.
Neither the base nor the exponent has to be a whole number. Consider these expressions: 

(4.2)3 = 4.2 * 4.2 * 4.2 = 74.088 and (2.93)2 = 2.93 * 2.93 = 8.5849. In these two cases, solv-
ing the problem is straightforward because the exponent is a whole number even though the base is not. 
But what does one do when the exponent is not a whole number?

First, consider decimal exponents that we may express as fractions (“rational” expo-
nents). Take, for example, the number 103.5. Although this notation tells you to multiply 10 by 
itself three and a half times, what does that mean? Clearly, 103 = 10 * 10 * 10 = 1000 and 
104 = 10 * 10 * 10 * 10 = 10,000. So, 103.5 must fall between 1000 and 10,000. But is it halfway 
between? Does this mean to multiply 10 by itself three times and then once by half of 10 (5)? The answer 
to that question is “no.”

10 * 10 * 10 * 5 ≠ 103.5 ≠ 5000

To understand this, realize that we can express the decimal exponent of 3.5 as the fraction “7/2.” 
Next, recall the rule that bm/n = (bm)1/n = (b1/m)n.  Therefore,

107/2 = (107)1/2 = (101/2)7 = 3162

Rather than saying the notation “103.5” instructs us to multiply 10 by itself three and a half times, 
we can interpret it in one of two other ways: (1) multiply 10 by itself seven times and then take the 
square root, or (2) take the square root of 10 and then multiply the result by itself seven times. Using 
either approach gives the same result of 3162 (after rounding). Clearly, this number is between 1000 and 
10,000, albeit far from halfway.

In exponential form, then, we have
103.5 = 3162

In logarithmic form, the relationship is
log10 3162 = 3.5

How do we handle a decimal exponent that we cannot express as a fraction, that is, an “irratio-
nal” exponent? Two famous irrational numbers are 22 (1.41421 c) and p (3.14159 c), neither 
of which can be written as the ratio of two integers. We can carry out the evaluation of a number like
 422 or 3p using the method of approximation, in which rational exponents are used to approximate the 
irrational one. Nevertheless, when an exponent is irrational, a calculator is the practical resort.

ChECkpoint 2-4

 1. Evaluate each of these exponential expressions:

 (a) 2.96 (b) 12903 (c) 0.6637

 2. Using the product rule, evaluate each of these exponential expressions:

 (a) 101.5 (b) 101.8

 3. Using the product rule, evaluate each of these logarithmic expressions:

 (a) log 10 (b) log 21

 1. (a) 594.8 (b) 2,146,689,000 (c) 0.0563112

 2. (a) 10
3�2 = (103)

1�2 = (10
1�2)3 = 31.623 (b) 10

9�5 = (109)
1�5 = (10

1�5)9 = 63.096

 3. (a) log 10 = log 5 * log 2 = 0.69897 + 0.30103 = 1

    (b) log 21 = log 7 * log 3 = 0.84510 + 0.47712 = 1.32222



chapter 2   •   exponential notation and logarithms            41

thE Logarithmic scaLE
Let us choose seven numbers and plot them on both the x- and y-axes of a graph: 0.01, 0.1, 1, 10, 20, 60, 
and 100. The resulting straight line appears in Figure 2-1 n.

Notice that the three lowest points on the graph are tightly clustered and are therefore hard, if not 
impossible, to distinguish from each other. Fortunately, there are other ways to plot these numbers—
alternatives that expand the space among the three crowded points and show their relationships clearly.

Using the same x-axis, for example, we can plot on the y-axis not the chosen number itself, but its 
logarithm. The result is the curve that appears in Figure 2-2A n. The number 100 on the x-axis cor-
responds to 2, which is its logarithm, on the y-axis; the number 0.01 on the x-axis corresponds to -2, 
which is its logarithm, on the y-axis.

n figurE 2-1 Seven chosen numbers plotted on both axes: 0.01, 0.1, 1, 10, 20, 
60, and 100. The three lowest points are tightly clustered.
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n figurE 2-2 Alternatives to the direct plot in Figure 2-1. The same seven numbers as in Figure 2-1 are plotted on 
the x-axes. Panel A: On the y-axis are the logarithms of the x values, plotted on an arithmetic scale. Panel B: On the 
y-axis are the x values themselves, but the scale is logarithmic. Unlike Figure 2-1, these two graphs clearly separate 
the three lowest points.
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In this graph (Figure 2-2A), a difference of 1 on the y-axis represents a 10-fold difference between 
the chosen numbers. For example, going from 2 to 1 on the y-axis corresponds to a change on the x-axis 
from 100 to 10, a 10-fold decrease. Notice that all the tick marks on the y-axis are equally spaced, each 
one representing either an increase or a decrease of 0.1 units from an adjacent mark. This scale on the 
y-axis is called an arithmetic scale (pronounced “arith-MET-ik”) because equal distances between tick 
marks represent equal amounts. The distance between any two adjacent tick marks is the same as the 
distance between any other two adjacent tick marks.

There is yet another alternative to the plot in Figure 2-1. As Figure 2-2B shows, we can plot the seven 
chosen numbers themselves along the y-axis but on a logarithmic scale. Plotting the chosen numbers 
on a logarithmic scale gives the same curve as plotting the logarithms of those numbers on an arithmetic 
scale (Figure 2-2A). The advantage in using the logarithmic scale (Figure 2-2B) is that we can plot the 
chosen numbers directly on a graph without having to calculate their logarithms.

Notice in Figure 2-2B that the tick marks on the y-axis are not uniformly spaced, as they are on the 
arithmetic scales in Figures  2-1 and 2-2A. On a logarithmic scale, equal distances represent equal ratios; 
that is, the distance between 1 and 2 is the same as the distance between 5 and 10, or between 50 and 100. 
Every value on the y-axis of the logarithmic scale (Figure 2-2B) corresponds to its own logarithm on the 
y-axis of the arithmetic scale (Figure 2-2A). Figure 2-3 n clarifies this.

Do logarithmic scales offer an advantage over arithmetic scales? Figures   2-1 and 2-2 have 
already suggested an answer to this question. In our example, plotting the chosen numbers on a 
logarithmic scale (Figure 2-2B) or plotting their logarithms on an arithmetic scale (Figure 2-2A) put 
space between points that were otherwise too close together (Figure 2-1), thereby distinguishing 
them from each other.

In general, original data sometimes cover such a wide range of values that arithmetic scales become 
unmanageably long, and fitting those scales to a printed page or a computer screen compresses the data 
points so much that important information is obscured. The judicious use of logarithmic scales or of 
logarithms can solve this problem.

n figurE 2-3 The y-axes of Figures 2-2A and 2-2B are juxtaposed to show 
 correspondence between their scales. Each pink double-headed arrow links a 
number on the logarithmic scale (the scale on the right) to its logarithm on the 
arithmetic scale (the scale on the left).

�2

�1.5

�1

�0.5

0

0.5

1

1.5

2

0.01

Each value on this axis is the
logarithm of the corresponding

value on the other axis.

A
rit

hm
et

ic
 S

ca
le

Logarithm
ic S

cale

0.1

1

10

100



chapter 2   •   exponential notation and logarithms            43

Consider a practical example from the microbiology laboratory. Suppose you are growing a culture 
of E. coli in liquid medium. You inoculate the medium, start the incubation, and then take samplings 
periodically to count the viable bacterial cells in a milliliter of your culture. From these counts you can 
find the growth rate and the generation time.

About every 20 minutes (three times per hour), each bacterium divides into two daughter cells (a 
process known as binary fission). Thus, the growth of your E. coli is exponential: one cell becomes 2 
cells, 2 become 4, 4 become 8, 8 become 16, and so on. Needless to say, therefore, the equation describing 
this growth involves an exponent:

2n = number of cells after n doublings

Consequently, after 2 hours, six doublings have occurred, giving 26, or 64, bacterial cells in each 
milliliter of your culture. After 4 hours, there have been 12 doublings, generating 212, or 4096, cells 
per mL. And after only 8 hours, there would theoretically be 224, or 16,777,216, cells in every milliliter 
of the culture (“theoretically” because in reality nutrient depletion and other factors would prevent the 
culture from becoming this dense).

Now, imagine a graph of your data on arithmetic scales (Figure 2-4A n), up to an incubation time 
of 4 hours. If you plot the number of bacterial cells per mL on the y-axis and the incubation time on 
the x-axis, then the y-axis must cover a very large range, from 1 to 4096 because in 4 hours there are 
12 doublings and, therefore, 212 cells.

As Figure 2-4A shows, fitting the very long y-axis to the page compresses the data points so much 
that, up to about 3 hours of incubation, it is impossible to see how much the cell number changes from one 
sampling to the next and whether that change is steady. This is where a logarithmic scale becomes helpful.

Figure 2-4B shows the result of plotting the same y-axis data on a logarithmic scale, against the 
same x-axis. Note that a semilogarithmic plot is one in which one of the scales is arithmetic and the 
other is logarithmic. The logarithmic y-axis in Figure 2-4B covers the range of the arithmetic y-axis in 
Figure 2-4A, but it does so without compressing the data points. As a result, it is clear in Figure 2-4B 
that the cell number increases by a factor of two from one sampling to the next and that the growth of 
the culture is steady up to an incubation time of 4 hours.

Logarithmic transformation of ratios
Data are sometimes reported in the form of ratios. Suppose, for example, that you are reporting the 
effects of two drugs on the concentration of circulating vitamin E. If the group of patients receiving drug 
A had a vitamin E level of 20 mg/L, whereas the group of patients receiving drug B had a level of 5 mg/L, 
then the ratio A/B is 20 mg/L , 5 mg/L, or 4. In other words, the vitamin E level was four times higher 
in patients on drug A than in those on drug B:

n figurE 2-4 Growth data for a culture of E. coli in liquid medium. Panel A: Data plotted on arithmetic scales. 
Panel B: Same data but with y values plotted on logarithmic scale.
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If we had reversed the results, however, then drug A would have given a vitamin E level of 5 mg/L 
and drug B 20 mg/L. The corresponding ratio A/B would have been 0.25:

relationship a/b log (a/b)

A 7 B 7 1 7 0

A = B     1     0

A 6 B 6 1 6 0

a/b log (a/b)

4    0.60206

0.25 -0.60206

This illustrates the asymmetry inherent to ratios: whenever A 7 B, the ratio A/B is greater than 
1, but whenever A 6 B, the ratio A/B is between 0 and 1. Of course, when A = B, the ratio is 1. This 
asymmetry conveniently disappears when we transform the ratios into logarithms.

In the first example above, log (A/B) is log (4), or 0.60206. In the second example, log (A/B) is log 
(0.25), or -0.60206. Thus, the two values have equal magnitudes but opposite signs:

It is sometimes preferable, then, to report the logarithms of ratios than to report the ratios themselves.

thE naturaL Logarithm
There is a curious constant in mathematics, denoted “e,” which repeatedly leaps out of many theoretical 
and practical contexts. The value of e is 2.7182817 . . .  In short, e represents the fundamental amount 
of change shared by all systems that grow or shrink exponentially and continuously. Consequently, it is 
useful in the calculations of compound interest, population growth, drug elimination, radioactive decay, 
and the spread of epidemics. It shows up in scores of seemingly disparate fields of human endeavor, a few 
examples being climatology, electronics, rocketry, gambling, economics, and ecology.

The value of e is the number that the following expression approaches as n increases:

a1 +
1
n
b

n

The table below shows how the value of this expression behaves as n keeps rising.

n
a1 +

1
n
b

n

1 2

10 2.59374246

100 2.70481382

1000 2.71692393

10,000 2.71814593

100,000 2.71826824

1,000,000 2.71828047

10,000,000 2.71828169

100,000,000 2.71828179

group serum vitamin E (mg/L) a/b

drug a  5
0.25

drug b 20

By restoring symmetry, logarithmic transformation of a ratio causes the value to be positive when-
ever A 7 B, negative whenever A 6 B, and zero when A = B:
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A natural logarithm, symbolized as “ln” (or as “/n” ) is the logarithm of a number to the base e:
ln x = loge x = log(2.7182818) x

For example, the natural logarithm of 100 is 4.6052:
ln 100 = log(2.7182818) 100 = 4.6052

which means, in turn, that e raised to the power of 4.6052 is 100:
e4.6052 = (2.7182818)4.6052 = 100

Be aware that “exp(x)” is another way of writing “ex”:
exp(x) = ex

Some reference sources present equations in terms of natural logarithms, whereas other sources use 
base-10 logarithms. Fortunately, converting between them is straightforward:

ln x = 2.303 log x

and

ln x
2.303

= log x

ChECkpoint 2-5

 1. Evaluate each of these expressions:

 (a) ln 1000 (b) e4 (c) exp(3.6)

 2. if the base-10 logarithm of x is q, then what is the natural logarithm of x?

 3. if the natural logarithm of x is w, then what is the base-10 logarithm of x?

 1. (a) 6.9078 (b) 54.5981 (c) 36.5982

 2. ln x = 2.303q

 3. log x = w/2.303

thE usEfuLnEss of Logarithms
Clearly, logarithms have properties that make them quite useful in science and technology—properties 
that explain the importance of logarithms in the situations listed in the introduction to this chapter. At 
this point, let us summarize the reasons for laboratory professionals to develop a working understand-
ing of logarithms.

 1. Because logarithms can accelerate calculations. Before the advent of calculators, logarithms 
often shortened the time required for a multiplication or division problem, though admittedly 
we rarely use them for this purpose anymore. For example, consider Figure 2-5 n. To multiply 
two numbers, say, q and r, we can carry out the calculation directly (black arrow) to get the 

n figurE 2-5 Two routes to the product of q and r. Black route: direct multiplication 
of q by r to give p. Pink route: finding p by means of the logarithms of q and r.

q � r
Take log q and log r.

log q and log r

Add log q and log r.

log q � log r � log p � s

Take antilog s.

p

Directly multiply
q by r.
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product, p. Alternatively (pink arrows), we can apply the “product rule” for logarithms: find 
the logarithm for each number (in a table), add the two logarithms together, and then take 
the antilogarithm of the sum (s). The antilogarithm of s is the product, p, of the two original 
numbers. Without a calculator, believe it or not, the logarithmic route is sometimes faster than 
the direct route.

 2. Because they simplify the expression of very large and very small numbers. The cumber-
some value of 66,500,000 is simpler when expressed as its logarithm, 7.823. Likewise, the value 
0.000003394 is easier to write as its logarithm, -5.4693.

 3. Because they can make graphs more revealing. Plotting data on a logarithmic scale or plotting 
the logarithms of those data on an arithmetic scale can put space between points—space that often 
reveals important information that is otherwise very difficult to discern.

 4. Because they restore symmetry to ratios. Transforming a ratio into its logarithm makes the 
value “0” when the numerator and denominator are equal, positive when the numerator is 
greater than the denominator, and negative when the numerator is less than the denominator.

 5. Because blind reliance on calculators creates a risky dependency. There will be times when no 
calculator is available. More importantly, however, any technologist, scientist, or engineer should  
be able to carry out rough logarithmic computations quickly in his or her head—or on paper—to 
detect errors, data anomalies, and instrument malfunctions.

Summary

 9. To express any number greater than 1 in exponential nota-
tion, move the decimal to the left until the number has a 
value between 1 and 10. Then, append “ * 10b,” where b is 
the number of places you moved the decimal. To express 
any number less than 1 in exponential notation, move the 
decimal to the right until the number has a value between 
1 and 10. Then, append “ * 10-b,” where b is the number 
of places you moved the decimal.

 10. There are algebraic rules for simplifying various calcula-
tions that involve exponents and logarithms. These equa-
tions are particularly handy for manipulating fractional 
exponents.

 11. An arithmetic scale is one in which equal distances 
between tick marks represent equal amounts. The dis-
tance between any two adjacent tick marks is the same as 
the distance between any other two adjacent tick marks. A 
logarithmic scale is one in which equal distances between 
tick marks represent not equal amounts, but equal ratios. 
The distance between, say, 1 and 2, is the same as the 
distance between 5 and 10, or between 50 and 100.

 1. We use exponents and logarithms widely in the clinical lab-
oratory in, for example, the calculations of spectroscopy, 
first-order processes, bacterial growth, acidity, and data 
reporting.

 2. in the following equation, b is the base and n is the exponent:

bn = x

 3. We call the variable n the “logarithm of x to the base b.” 
The equation for this relationship is

logb x = n

  in which x is called the argument of the logarithm.
 4. We call the variable x the “antilogarithm of n to the base b.” 

The equation for this relationship is

antilogb n = x

 5. When the base is 10, the notation is either “log10 x”  or 
“log x.” We sometimes call base-10 logarithms common 
logarithms.

 6. A negative exponent symbolizes the reciprocal of the base 
that has been raised to the positive exponent:

b-n =
1
bn

 7. Exponential notation is a standard way of expressing any 
integer or decimal number in exponential form, in order to 
make very large or very small values more convenient to 
write and read.

Significand Exponential Term

 8. The standard format for exponential notation comprises 
two parts: the significand and the exponential term:

2.649 * 109
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Practice Problems
 1. (LO 2, 3) Write each of the following relationships in expo-

nential form.

 (a) log10 (66,590) = 4.8234

 (b) log10 (30,000,000) = 7.4771

 (c) log10 (206.5) = 2.3149

 (d) log2 (16) = 4

 (e) log5 (15,625) = 6

 (f) log3 (59,049) = 10

 (g) log (8) = 0.903

 (h) log (0.8) = -0.0969

 (i) log (0.0023) = -2.64

 2. (LO 2, 3) Write each of the following relationships in loga-
rithmic form.

 (a) 62.3 = 67.193 (b) 10-0.27 = 0.537

 (c) 106 = 1,000,000 (d) 214 = 16,384

 (e) 10-4 = 0.0001 (f) 5.12 = 26.01

 (g) 103.33 = 2137.96 (h) 10-2.6 = 0.00251

 (i) 4.90.67 = 2.90

 3. (LO 2, 3, 9) Evaluate each of the following expressions.

 (a) log 300 (b) log (11,000)

 (c) log3 243 (d) ln 10

 (e) log2 128 (f) ln 668

 (g) loge 147 (h) antilog 8.8

 (i) ln (log 10,000) ( j ) antilog2 7

 (k) log (ln 8401) (l) antilog -0.2

 (m) log 0.0443 (n) ln 0.7

 (o) antilog -7.3

 4. (LO 3, 10) Write each of the following numbers in exponen-
tial notation.

 (a) 0.000655 (b) 9,030,000

 (c) 101,200 (d) 400

 (e) 0.165 (f) 3,700,000,000,000

 (g) 0.00000092 (h) 3775

 (i) 16,020

 5. (LO 3, 10) Write each of the following exponential expres-
sions as an integer or decimal number.

 (a) 1.9 * 106 (b) 4.722 * 10-4

 (c) 9.0 * 10-3 (d) 5.510 * 105

 (e) 6.08 * 109 (f) -2.6 * 104

 (g) 7.4553 * 107 (h) -8.83 * 10-3

 (i) 2.05 * 102

 6. (LO 4) Using an appropriate algebraic rule for exponents 
or logarithms, propose values for the variables that sat-
isfy each of the following equations. The first problem has 
been worked to serve as an example.

 (a) (3m)(3n) = 2187

  For this equation, the product rule for exponents is 
suitable:

bmbn = b(m+n)

  Therefore,

(3m)(3n) = 3(m+n) = 2187

  Because 37 = 2187,

m + n = 7

  Any pair of numbers whose sum is 7 satisfies the equa-
tion. An example is

m = 2  and  n = 5

 12. Plotting data on a logarithmic scale or plotting their logarithms 
on an arithmetic scale can put space between points that are 
otherwise too close together for reliable interpretation.

 13. When data are reported as ratios, transformation into loga-
rithms can restore symmetry such that the value is posi-
tive whenever A 7 B, negative whenever A 6 B, and zero 
when A = B.

 14. A natural logarithm (“ln”) is the logarithm of a number to 
the base e, which is a frequently encountered mathematical 
constant whose value, to seven decimal places, is 2.7182818:

ln x = loge x = log(2.7182818) x

 15. Natural logarithms and base-10 logarithms are related to 
each other:

ln x = 2.303 log x

 16. There are sound reasons for developing a working under-
standing of logarithms. Logarithms can accelerate calcula-
tions, they can simplify very large or very small numbers, 
they can make graphs more revealing, and they can restore 
symmetry to ratios. Furthermore, relying blindly on calcula-
tors creates dependency.
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 (b) (2m)/(2n) = 4 (c) log x + log y = 5

 (d) 10n5n = 2500 (e) log x6.2 = -12.5581

 7. (LO 2, 10) Convert each of the following numbers into its 
logarithm.

 (a) 1,229,000 (b) 8.37 * 10-6

 (c) 0.011 (d) 1.99890 * 10-3

 (e) 0.000340 (f) 9.70023 * 109

 8. (LO 2, 10) Calculate the antilogarithm of each of the fol-
lowing logarithms.

 (a) -0.9655 (b) 4.9 (c) 3.6627

 (d) 2.080 (e) -5.113 (f) 10.5669

 9. (LO 2) By what factor is 108 greater than 104?

 10. (LO 2) Which of the following numbers is (or are) twice as 
large as 3.8 * 104?

 (a) 3.8 * 108 (b) 0.76 * 105 (c) 76 * 105

 11. (LO 2) Which of the following numbers is (or are) 10 times 
smaller than 9.7 * 10-5?

 (a) 9.7 * 10-6 (b) 0.0000097 (c) 0.97 * 10-5

 12. (LO 2) Which of the following, when multiplied by 1000, 
give (or gives) 10-2?

 (a) 0.00001 (b) 1 * 10-5 (c) 0.01 * 10-4

 13. (LO 2) Consider two numbers, x and y. If log x = 1 + log y, 
then how much greater is x than y?

 14. (LO 2) Consider two numbers, q and r. If

log (q) - 3 = log r,

  then how much smaller is r than q?

 15. (LO 2) Consider three numbers: a, b, and c. If

log a = 2 + log b

  and

log b = (log c) - 3,

  then which number is the largest?

 16. (LO 2, 10) Calculate each of the following expressions.

 (a) (2.4 * 10-5)(4.6 * 103)

 (b) (7.08 * 106)(0.113)

 (c) (3.55 * 10-7)/3.8

 (d) (3.0 * 105)/(-3.0 * 105)

 (e) (-4.04 * 108)(3.66 * 10-8)

 (f) 144/(6.67 * 103)

 17. (LO 2, 4) Complete the following table.

 18. (LO 2, 4) Explain whether each of the following assertions 
is true.

 (a) if log x = log y, then x = y.

 (b) if log x = 2 log y, then x = y2.

 (c) if x = 28,446, then log x is between 4 and 5.

 (d) if log y = 6.39, then y is between 1,000,000 and 
10,000,000.

 (e) if log x = -4 and y = 0.00025, then x 7 y.

 (f) if log x = -7.3 and y = 10-8, then x 7 y.

 (g) if y is 10 times larger than x, then log y is larger than 
log x by 1.

 (h) if x is 1/1000 of y, then log x is less than log y by 3.

Contextual Problems
 1. (LO 1, 2, 3, 8) The physicians in your hospital have set 

a  general goal of achieving a “1-logarithm drop” in 
the  viral load for patients who have recently begun 
treatment for hepatitis C. We express viral load as 
 copies of viral RNA present in a particular volume, usu-
ally 1 mL, of blood. For each of the following patients 
undergoing treatment for hepatitis C, determine 
whether the physicians achieved a 1-log drop in the 
viral load.

log a log b b/a

(a)   2 5

(b)   2         100

(c) 6        100

(d)   4         10

(e) -1 2

(f) -8    100,000

(g) 3.17        10

(h)    4.9 6.9

(i) -3.5 10,000,000

viral Load (copies/mL blood)

patient previous present

W 13,200,000 1.2 * 106

x 2.4 million 230,000

Y 990,000 120,000

Z 1.9 * 106 1.8 * 105
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the log of the copies/mL. Laboratory 3 uses a ratio of 2.2 
copies per IU.)

Log of number of viable bacterial cells

patient preirrigation postirrigation

A 4.13 2.36

B 3.01 1.02

C 2.64 1.17

Laboratory viral Load

1 7.548

2 38.3 million copies/mL

3 1.45 * 107 iU/ml

viral Load (copies/mL blood)

patient previous present

N 4.4 million 380,000

o 9.6 * 106 75,000

P 22,500,000 2.24 * 105

Q 5,600,000 3000

 2. (LO 1, 2, 3, 8) For each of the following patients under-
going treatment for hepatitis C, determine the largest 
whole number of logarithms that the drop in viral load has 
spanned.

 3. (LO 1, 2, 8) Some laboratories report viral loads as log-
arithms rather than counts. For example, rather than 
“2,560,000 copies/mL,” they may report simply “6.408.”

 (a) Explain whether this practice has an advantage for the 
physician.

 (b) if patient g’s viral load is reported as the logarithm 
“6.933,” what is her count?

 (c) You determine the viral load of patient J to be 18,450,000 
copies/mL. Express this result as a logarithm.

 (d) Expressed as a logarithm, patient L’s viral load (counts/
mL) before treatment was 7.223; a few weeks after 
treatment began, it was 4.187. By what factor did the 
load decrease? By how many logarithms did the load 
decrease?

 4. (LO 1, 2, 3, 8) There is another system for expressing viral 
load: the International Unit (IU). At this writing, there is 
no universal formula for interconverting “copies/mL” and 
“IU/mL.” Currently, the ratio ranges from about 1 copy to 
about 5 copies of viral RNA per IU. In other words, whereas 
one laboratory may equate 1 copy to 1 IU, another may 
use a different ratio, say, of 4 copies to 1 IU.

 (a) For a laboratory that uses the ratio of 2.6 copies per iU, 
convert a result of 884,000 iU/ml into “copies/ml.”

 (b) For a laboratory that uses the ratio of 1.5 copies per iU, 
convert 1.45 * 107 copies/ml into “iU/ml.”

 (c) at a ratio of 3.8 copies per iU, convert 5.4 million  
copies/ml into “iU/ml.”

 (d) at a ratio of 3.1 copies per iU, convert the logarithm of 
the copies/ml, 6.223, into “iU/ml.”

 (e) at a ratio of 2.7 copies per iU, convert 1.2 million iU/ml 
into the logarithm of the copies/mL.

 5. (LO 1, 2, 3, 8) (Refer to problems 3 and 4) An accredit-
ing agency conducted a comparison of three laborato-
ries’ methods for quantifying hepatitis C virus in blood. 
All three laboratories analyzed the same sample, and each 
reported the result in its own standard format. The table 
below shows those results. Which laboratory reported 
the highest amount of viral RNA? (Laboratory 1 reports 

 6. (LO 1, 2, 8) Your microbiology laboratory is helping evalu-
ate a new topical antiseptic for irrigation before eye sur-
gery. A swab of a specified surface of the patient’s eye was 
taken immediately before irrigation with the antiseptic and 
another immediately afterward. The table below summa-
rizes the results for three patients.

 (a) did any of the patients show a reduction of 1000-fold or 
greater? if so, which one?

 (b) Which patient showed a 100-fold reduction?

 (c) For patient c, calculate the percentage reduction in the 
number of cells.

 7. (LO 1, 2) Analytical spectroscopy is one of the most impor-
tant techniques in the clinical laboratory. It is based on the 
absorption of light of a particular wavelength by chemi-
cal substances. A beam of light of known intensity (I0) is 
directed into a solution, and the intensity (I  ) of the light 
emerging from the solution is then measured. The fraction 
of light transmitted (I/I0) is called the transmittance (T):

T =
I
I0

  Being a fraction, T ranges in value from 0 to 1. The light 
that did not pass through the sample was absorbed. For 
example, if T = 0.80, then 80% of the light passing through 
the sample was transmitted and 20% was absorbed.

  Although transmittance goes down as concentration 
goes up, the relationship is exponential, not linear. A plot, 
therefore, of T against concentration is difficult to use as 
a standard curve. But the logarithm of T as a function of 
concentration is a straight line and, as a result, a useful stan-
dard curve. For this purpose, absorbance (A) is defined as

A = - log 
I
I0

= - log T

  Thus, if T = 0.648, then 64.8% of the light passing through 
the sample is transmitted and 35.2% is absorbed. The 
absorbance, then, or A, is

A = - log T = - log 0.648 = 0.188
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 (a) When 61% of the light passing through the sample is 
transmitted, what is the value of T ?

 (b) When 29/100 of the light passing through the sample is 
transmitted, what is the value of T ?

 (c) When 34% of the light passing through the sample is 
absorbed, what is the value of T ?

 (d) When 18% of the light passing through the sample is 
absorbed, what is the value of A?

 (e) if half the light passing through a sample is transmitted, 
what is the absorbance?

 (f) if 95% of the light passing through a sample is transmit-
ted, what is the absorbance?

 8. (LO 1, 2, 5, 6, 7, 10) Synthesized by the kidney, eryth-
ropoietin (EPO) is a hormone that regulates blood cell 
production in the bone marrow. In the following table 
appear data for a standard curve from an assay for 
serum EPO. The assay measures absorbance of light 
at a wavelength of 450 nm. The EPO concentration 
is expressed as milli-international units (mIU) per mL of 
serum.

 (a) Complete the following data table.

the risk of Down syndrome. In the following table appear 
data for a standard curve from an assay for serum inhibin-
A. The assay measures absorbance of light at a wavelength 
of 450 nm. The inhibin-A concentration is expressed as pg 
per mL of serum.

 (a) Complete the following data table.

concentration of 
standard (pg/mL)

 
A450

Log of  
concentration

 
Log(A450)

12.0 0.019

32.0 0.056

97.0 0.171

249 0.448

495 0.814

890.0 1.507

concentration of 
standard (miu/mL)

 
A450

Log of  
concentration

 
Log(A450)

2.50 0.042

5.00 0.081

20.0 0.319

50.0 0.773

100. 1.459

200. 2.586

 (b) Construct the following four graphs of the data.

 (1) A450 as y and concentration as x, with each variable 
on an arithmetic scale

 (2) Log(A450) as y and log(concentration) as x, with each 
variable on an arithmetic scale

 (3) A450 as y and concentration as x, with concentration 
on a logarithmic scale

 (4) A450 as y and concentration as x, with each variable 
on a logarithmic scale

 (c) in what way is graph 2 superior to graph 1?

 (d) in what way is graph 4 superior to graph 3?

 (e) What is the practical advantage of graph 4 over 
graph 2?

 9. (LO 1, 2, 5, 6, 7, 10) Inhibin-A is a protein hormone whose 
serum concentration in pregnant women correlates with 

 (b) Construct the following four graphs of the data.

 (1) A450 as y and concentration as x, with each variable 
on an arithmetic scale

 (2) Log(A450) as y and log(concentration) as x, with each 
variable on an arithmetic scale

 (3) A450 as y and concentration as x, with concentration 
on a logarithmic scale

 (4) A450 as y and concentration as x, with each variable 
on a logarithmic scale

 (c) in what way is graph 2 superior to graph 1?

 (d) in what way is graph 4 superior to graph 3?

 (e) What is the practical advantage of graph 4 over 
graph 2?

 10. (LO 1, 2, 5, 6, 7, 10) In your laboratory’s radioimmunoas-
say for vitamin D, the sample to be analyzed is mixed 
with (a) radiolabeled vitamin D in a known amount and 
(b) an antibody specific for vitamin D. As incubation pro-
ceeds, the endogenous vitamin D and the exogenous 
radiolabeled vitamin D compete with each other for the 
same binding sites on the antibody. Consequently, as the 
concentration of endogenous vitamin D rises, the prob-
ability of its binding to the antibody goes up, whereas 
the probability of radiolabeled vitamin D’s binding goes 
down. Thus, the concentration of endogenous vita-
min D  present in the sample and the amount of radio-
labeled vitamin D bound to antibody move in opposite 
directions.

  In the following table appear data for a standard curve 
from an assay for vitamin D. The assay determines how 
much radiolabeled vitamin D is bound to the antibody and 
reports that amount as a percentage of the total radio-
labeled vitamin D added.
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 (a) Complete the following data table.

 (a) Complete the fourth column of the table by calculat-
ing the ratio of the found concentration in the presence 
of each chemical substance to the found concentration 
with no substance present.

 (b) What is true about the extent to which vancomycin and 
lead affect the results of this assay method?

 (c) Transform the relative results for tubes 1, 3, and 5 into 
logarithms.

 (d) How do the logarithmic values for vancomycin and lead 
show more clearly how these two substances affect the 
results?

 
tube

chemical 
substance

result for  
protein Q (pg/mL)

relative result  
for protein Q

1 none 3.4

2 caffeine 3.5

3 vancomycin 6.7

4 acetaminophen 4.0

5 lead 1.7

 
concentration  
of Endogenous  

vitamin d  
(ng/mL)

% of added  
radiolabeled  

vitamin d bound  
to antibody 
(%bound)

 
 
 

Log of  
concentration

 
 
 

Log 
(%bound)

0.5 96.00

5 82.36

12 61.57

20 44.25

40 28.05

100 16.68

 (b) Construct the following three graphs of the data.

 (1) %Bound as y and concentration as x, with each vari-
able on an arithmetic scale

 (2) Log(%Bound) as y and log(concentration) as x, with 
each variable on an arithmetic scale

 (3) %Bound as y and concentration as x, with concentra-
tion on a logarithmic scale

 (c) on graph 2, which is a plot of one logarithm versus 
another logarithm, the values of 0, 1, and 1.8 on the 
x-axis correspond to which vitamin d concentrations?

 (d) in what way is graph 3 superior to graph 1?

 (e) in what way is graph 1 superior to graph 3?

 (f) What unique difficulty does graph 2 pose?

 11. (LO 1, 2, 8) You’re working for a manufacturer of a diag-
nostic test for protein Q in human serum. Your task is to 
run the test in the presence and absence of known chemi-
cal substances that sometimes occur in serum in order to 
determine whether those substances interfere with the 
assay and affect the results. According to the table below, 
you select one serum sample, divide it among five tubes, 
add the specified chemical substance in a known amount, 
and then run the test on the contents of each tube.

Go to www.myhealthprofessionskit.com <http://www.myhealthprofessionskit.com/> to access the Compan-
ion Website created for this textbook.  Simply select “Clinical Laboratory Science” from the choice of disciplines. 
Find this book and log in using your username and password to access additional practice problems, answers 
to the practice and contextual problems, additional information, and more.

PEARSON

www.myhealthprofessionskit.com
http://www.myhealthprofessionskit.com/
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Learning Objectives
At the end of this chapter, the student should be able to do the following:
 1. Round whole numbers, decimal numbers, and exponential expressions
 2. Predict the effect of rounding on the average of a set of numbers
 3. Explain the nature of figure significance
 4. Relate figure significance to precision
 5. Identify, count, and report the significant figures, whether nonzeros or 

zeros, in any measurement
 6. Round, to the correct number of significant figures, a numerical result from 

any arithmetic operation or combination of operations
 7. Round a calculated average to the correct number of significant figures
 8. Identify, count, and report the significant figures in an exponential expres-

sion or logarithm
 9. Calculate and interpret absolute uncertainty, relative uncertainty, and 

implied relative uncertainty
 10. Calculate bias introduced by rounding
 11. Round meaningfully when the rules of figure significance give unaccept-

able results

Key Terms

Rounding and the  
Significance of Figures3

absolute uncertainty
accuracy
bias
characteristic
embedded zero
implied relative uncertainty
leading zero

mantissa
precision
relative uncertainty
rounding digit
significant figure
trailing zero
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Numbers are either exact or inexact. Exact numbers are those that result from counting things, 
whereas inexact numbers result from measuring things. Even though we sometimes round exact num-
bers, such as the population of a city to the nearest 1000, we always round inexact numbers because of 
the uncertainty inherent to making measurements. Rounding numbers is a simple mathematical practice 
that should become automatic for anyone who works in a laboratory. Although everyone approximates 
numbers in daily life, the need for precision and consistency in the technical setting calls for a particular 
set of rules for rounding. Through it all, however, remember that rounding is about keeping a number 
consistent with the level of our certainty in it.

Simple Rounding
Consider the number “263.” Suppose someone in the laboratory reports this number to us as a mea-
surement of, say, a length in “mm” or a volume in “μL.” If we want the measurement only to the near-
est hundred, then we recognize 263 to be closer to 300 than it is to 200; so, we round 263 up to 300.

If, instead, we want the measurement to the nearest 10, then we recognize 263 to be closer to 260 
than it is to 270; so, we round the number to 260.

Clearly, the raw measurement of “263” was actually some number that rounds to 263. It may have 
been, for example, 263.42 or 262.88. If we want the measurement only to the nearest whole number, then 
either of these possibilities rounds to 263. If we want the measurement to the nearest tenth, however, 
then we recognize 263.42 as being closer to 263.4 than it is to 263.5; likewise, 262.88 is closer to 262.9 
than it is to 262.8.

Here are the step-by-step procedures for rounding numbers.

Rounding Whole Numbers

 1. Identify the place (ones, tens, hundreds, etc.) to which the number is to be rounded. The rounding 
digit stands in that place.

 2. If the first digit to the right is less than 5, then do not change the rounding digit but do change to “0” 
all digits to the right of it.

 87,329
rounds to

 87,300
EXAMPLE

Rounding Digit

 3. If the first digit to the right is 5 or greater, then add 1 to the rounding digit and change to “0” all digits 
to the right of it.

 87,362
rounds to

 87,400
EXAMPLE

Rounding Digit

Rounding Decimal Numbers

 1. Identify the decimal place (tenths, hundredths, thousandths, etc.) to which the number is to be 
rounded. The rounding digit stands in that place.

 2. If the first digit to the right is less than 5, then do not change the rounding digit but do drop all digits 
to the right of it.

 87.329
rounds to

 87.3
EXAMPLE

Rounding Digit
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 3. If the first digit to the right is 5 or greater, then add 1 to the rounding digit and drop all digits to the 
right of it.

 87.362
rounds to

 87.4
EXAMPLE

Rounding Digit

Rounding Fives
As the rules state, when the final digit is “5,” round up. For example, 262.5 rounds up to 263, not down 
to 262. Similarly, 7.095 rounds up to 7.10, not down to 7.09. Be aware, however, that some authorities 
disapprove of this practice because it creates a different number of chances to round down than it does 
to round up (a number is rounded down when the final digit is 1, 2, 3, or 4, but up when the final digit is 
5, 6, 7, 8, or 9). Consequently, we will round down four out of every nine times, but round up five out of 
every nine times. This introduces bias (discussed below), which is defined as a constant error in a series 
of observations or calculations. Why does this matter?

Under these rules, as Table 3-1 H shows, the average of a set of numbers is higher after rounding 
than it is before rounding because more numbers are rounded up than down. There is, however, a way 
to prevent this unintended consequence: whenever the final digit is “5,” simply round to an even num-
ber, whether doing so amounts to a rounding up or a rounding down. In this approach, there are about 
as many roundings down as there are roundings up, and the average of the rounded numbers should, 
therefore, be closer to the average of the raw numbers (Table 3-1).

Average

Raw numbers 63.5, 61.6, 65.5, 67.2, 62.5, 62.1, 60.5, 64.5 63 (63.4)

Rounded up when final digit is “5” 64, 62, 66, 67, 63, 62, 61, 65 64 (63.75)

Rounded up or down to even number  
when final digit is “5”

64, 62, 66, 67, 62, 62, 60, 64 63 (63.4)

H TAble 3-1  How the Average is Affected by Different Rules on the Rounding 
of Numbers with a Final Digit of “5”

CheCkpoint 3-1

 1. Using the standard rules, round each number to the nearest whole.

 (a) 29.6 (b) 11,803.1 (c) 8.70 (d) 1.5

 2. Using the standard rules, round each number to the nearest hundredth.

 (a) 0.233 (b) 2.009 (c) 17.102 (d) 6.996

 3. Using the standard rules, round each number to the nearest 10.

 (a) 119 (b) 6044 (c) 703 (d) 241,558

 1. (a) 30 (b) 11,803 (c) 9 (d) 2

 2. (a) 0.23 (b) 2.01 (c) 17.10 (d) 7.00

 3. (a) 120 (b) 6040 (c) 700 (d) 241,560

FiguRe SigniFicAnce
What Significant Figures Are
In any number arising from a measurement, a significant figure is one that either is known with  certainty 
or has been estimated. In a properly reported measurement, therefore, any nonzero digit is significant (zeros 
are discussed below). Suppose you measure, in “mL,” the volume of a liquid in a graduated cylinder, as 
in Figure 3-1 n.
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Different technologists will estimate the final digit slightly differently; reported values, for example, 
may range from 31.71 mL to 31.73 mL. If the volume is reported as “31.72,” we can conclude that it is 
undoubtedly greater than 31.70, less than 31.80, and less than halfway between those two limits. Where 
exactly it lies between them, however, is questionable. Thus, there are four significant figures in the mea-
surement “31.72,” but the last one is the least reliable. It is customary in science to report a measurement 
such that only the last digit is uncertain.

Figure Significance and Precision
Whoever measures the volume may choose to round the result to “32” or “31.7,” or may report it as 
“31.72.” The value “32” is accurate to the nearest whole number, which means that the raw measure-
ment was between 31.5 and 32.5. The number “31.7,” however, is accurate to the nearest tenth, the 
measurement being between 31.65 and 31.75. The number “31.72,” of course, is accurate to the nearest 
hundredth, lying between 31.715 and 31.725. In these three values, notice that the measurement becomes 
more precise as the number of decimal places increases.

The degree of that precision lies in the number of significant figures the value has within it. The 
value “32” has two significant figures, “31.7” has three, and “31.72” has four. Thus, as the number of 
significant figures increases, the precision in the value also goes up. But what does this mean?

Suppose four technologists measured the volume in Figure 3-1 and reported the results (in “mL”) to 
be 31.72, 31.71, 31.72, and 31.73. The lowest value, 31.71, comes from a measurement that was between 
31.705 and 31.715, whereas the highest value, 31.73, corresponds to a measurement between 31.725 
and 31.735. Therefore, the possible range for all four measurements reported by the technologists starts 
at 31.705 and ends at 31.735. The difference is only 0.030 mL, or 0.09% of 31.720, which is the middle 
of that range.

Now suppose the technologists had merely read the volume to the nearest whole number, each of 
them reporting it to be “32.” Although it seems at first glance that their agreement is perfect, realize that 
the number “32” could have arisen from any volume between 31.5 and 32.5, a difference of 1.0 mL, or 
3.1% of 32.0, which is the middle of that range. As a percentage, therefore, this difference is much higher 
(33 times higher) than the difference in the previous example.

The upshot of this comparison is the fact that, when more significant figures are present, the 
agreement among repeated measurements is tighter (unless, of course, someone makes a gross 
error). Agreement among repeated measurements is called precision, which Chapter 8 discusses 
in more depth. By contrast, the number of significant figures has no bearing on whether a value 
is correct or incorrect, that is, the accuracy, because, even if the manufacturer of the cylinder in 
Figure 3-1 had accidentally mislabeled the mark “32” instead of “31,” the four technologists would 
still have read the volume as they did. Their readings would have been incorrect, of course, but still 
close to each other.

The Significance of Zeros
Numbers that contain zeros pose questions that require more thought. Let us focus on the three 
categories of zero, classified by location within numbers. Table 3-2 H summarizes the significance 
of zeros.

n FiguRe 3-1 Typical uncertainty in volume measurements.

32

31

One person may read this volume as 31.71,
whereas another may report 31.72 and
someone else 31.73. In any case, the volume
is clearly between 31.70 and 31.75, making
the first three digits unquestionable. It is the
last digit that is in doubt.
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Trailing Zero
A trailing zero is any zero that follows the last nonzero digit in a number. A multiple of 10, such as the 
number “80,” is ambiguous because we do not know whether it represents rounding to the nearest whole 
number or to the nearest 10. In other words, the raw measurement in this case may have been 79.8 
rounded to the nearest whole number, or it may have been 83 rounded to the nearest 10. Because the 
number “80” itself does not distinguish between these two possibilities, the zero is uncertain, and it has 
not been estimated in the measurement. Therefore, it is not significant and “80” has only one significant 
figure; the zero serves only to indicate the scale.

There is, however, a way to eliminate the ambiguity and give meaning to the zero. If the measure-
ment was indeed 79.8 rounded to the nearest whole number, then a decimal point would remove all 
doubt. Instead of “80,” we could write “80.”, indicating that the raw measurement was between 79.5 
and 80.5. In the number “80.”, the zero is significant because it has some certainty; thus, there are now 
two significant figures in the number. We can say, then, that a trailing zero is significant only if there is 
a decimal point in the number.

Likewise, the number “6700” does not distinguish among its three possible origins. The raw mea-
surement may have been 6700.2 rounded to the nearest whole number. Perhaps it was 6704 rounded 
to the nearest 10 or 6681 rounded to the nearest 100. Therefore, only the “6” and “7” in “6700” are sig-
nificant. However, writing “6700.” would tell us that the measurement had been rounded to the nearest 
whole number; all four figures, therefore, would become significant.

Another way to eliminate the ambiguity is to specify the number of significant figures, such as 
“5000 (3 s.f.),” or to underline the last significant zero, such as “5000.” These conventions, however, 
are not  universally used. A better approach is to declare the uncertainty outright, an example being 
“5000 { 10”  (the chapter discusses this practice later).

As seen above, trailing zeros followed by a decimal point are significant. However, any trailing zero 
in a number containing a decimal point is significant. The number “80.0,” for example, is not at all ambigu-
ous; it tells us clearly that the raw measurement was between 79.95 and 80.05, rounded to the nearest 
tenth. Thus, each zero in “80.0” is significant. Likewise, “6700.000” tells us without a doubt that the raw 
measurement was between 6699.9995 and 6700.0005, rounded to the nearest thousandth. Consequently, 
every zero is significant.

leading Zero
A leading zero is any zero that precedes the first nonzero digit in a number. Consider the number 
“0.0062.” It resulted from the rounding of a measurement between 0.00615 and 0.00625, to the nearest 
ten-thousandth. The leading zeros contribute nothing to the precision of the number itself; they only 
indicate the scale. To prove this, consider the following line of thinking.

The difference between the top and bottom of the range, 0.00625 and 0.00615, is 0.00010; 
this is 1.6% of 0.00620, the middle of the range. Now remove the leading zeros (and the decimal 
point) to make the range run from 615 up to 625. The difference between the top and bottom is 
now 10, but 10 is still 1.6% of 620, the middle of the range. Clearly, whether or not the leading zeros 
are present, the difference between the top and bottom of the range is 1.6% of the middle of the 
range. Thus, leading zeros are never significant. In this example, the number “0.0062” has only two 
significant figures.

category definition examples Rule

Trailing zero Any zero that follows  
the last nonzero digit

40, 8900, 60., 5.7700 Significant only if 
there is a decimal 
point in the number

Leading zero Any zero that precedes  
the first nonzero digit

0.119, 0.000083 never significant

Embedded zero A zero that occurs anywhere 
between two nonzero digits

2096, 101, 47.8006 Always significant

H TAble 3-2 The Significance of Zeros
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embedded Zero
An embedded zero is a zero that occurs anywhere between two nonzero digits in a number. Because its 
value is certain, a zero that falls between two nonzero significant figures is itself significant. The number 
“706,” for example, is the result of rounding a measurement that fell between 705.5 and 706.5; the zero 
has meaning and is not even involved in the rounding. Similarly, the number “1.0025” is the result of 
rounding a measurement that fell between 1.00245 and 1.00255. Again, the zeros are unambiguous in 
this number and are, therefore, significant.

CheCkpoint 3-2
How many significant figures are present in each number?

 (a) 42 (b) 1693 (c) 302 (d) 0.225 (e) 1.004

 (f) 0.077 (g) 44,000 (h) 20. (i) 2.000

 (j) 628.01 (k) 0.90 (l) 80.80 (m) 100

 (a) 2 (b) 4 (c) 3 (d) 3 (e) 4

 (f) 2 (g) 2 (h) 2 (i) 4

 (j) 5 (k) 2 (l) 4 (m) 1

exAmple 1

While carrying out a diagnostic test, you dispense 2.0 mL of a glucose solution at a 
 concentration of 0.629 g/mL. How many grams of the glucose are in this volume?

2.0 mL : 0.629 g/mL = 1.258 g

The measured quantity with the fewest significant figures is “2.0”; therefore, the product 
of this equation may have no more than two. The correct answer is 1.3 g.

SigniFicAnT FiguReS in The ReSulTS oF cAlculATionS
It is logical that only figures that are certain or that have been estimated should be treated as significant. 
The complication arises in deciding how many significant figures to include in the final result of a process 
that comprises several measurements or calculations.

Suppose, for example, that you prepare a glucose solution by (1) dissolving 5 g of glucose in water, 
and (2) bringing the volume up to 100. mL. It would be ridiculous to report the concentration as 5.0000 
g/mL. That implies certainty in the concentration out to the nearest ten-thousandth of a gram, even 
though the mass of glucose was known only to the nearest whole number of grams. The result cannot be 
more certain than the least-reliable measurement that went into the calculation.

Consider an assay for an analyte in serum that requires you to add 220 μL of reagent A to 11 mL of 
reagent B; results are in “pg/mL.” Such a method might be an ELISA (enzyme-linked immunosorbent 
assay) that uses a 96-well microplate. Because each volume has only two significant figures, it would be 
absurd (and dishonest) to report the final concentration of the analyte in a sample to be 386.714 pg/mL. 
There is no justification for asserting that six figures can be reliable in the concentration when only two 
were significant in each of the volumes that went into the calculations.

How, then, does one decide how many significant figures to include in the result of a calculation or a 
series of calculations? As you learn the rules for figure significance in the following sections, remember that 
the word rules is too strong. They are actually guidelines that serve as shortcuts to the correct number of sig-
nificant figures by making it unnecessary to carry out a detailed error analysis for every calculation you face.

Multiplication and Division
The result of a calculation involving only multiplication and/or division can have no more significant 
figures than there are in the measured quantity with the fewest. Consider the following two examples.
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Addition and Subtraction
In addition or subtraction operations, the last significant figure in the final result must occupy the same 
place as the last significant figure in the measurement that has the greatest uncertainty. The measurement 
with the greatest uncertainty is the one whose last significant figure is farthest to the left among all the 
numbers going into the calculation. A consequence of this, of course, is that the number of significant 
figures can change in the course of addition or subtraction, in contrast to multiplication or division. 
Consider the following three examples.

exAmple 2

You are preparing an aqueous solution of 0.272 g of sodium chloride in a final volume of 
300. mL. What is the concentration of the resulting solution?

0.272 g , 300. mL = 0.00090667 g/mL

Each measured quantity has three significant figures (note the decimal point in the volume). 
Therefore, the quotient of this equation may have no more than three, and the correct 
answer is 0.000907 g/ml.

exAmple 1

Add the following three measurements together.

+

33
109
 20
162

The sum must have its last significant figure in the same place as the least-certain quantity 
does. That number is “20,” in which the last significant figure (also the only one) is in the 
tens place; therefore, the last significant figure in the sum must also be in the tens place. 
The correct answer is 160, not 162.

exAmple 2

Add the three measurements below together.

+

33.77
109.61

2.07918
144.91018

The least-certain number is “33.77,” in which the last significant figure occupies the 
hundredths place. Therefore, the last significant figure in the sum must also occupy the 
hundredths place. The correct answer is 144.91, not 144.91018.

exAmple 3

Consider the following subtraction.

-
668.94
 72   
596.94

The least-certain number is “72,” in which the last significant figure is in the ones place. 
Therefore, the last significant figure in the difference must also be in the ones place. The 
correct answer is 597, not 596.94.
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Combined Operations
When a calculation combines operations (multiplication, division, addition, and subtraction), apply 
the rules for figure significance before and after every step involving addition or subtraction. Table 3-3 H 
shows how these rules affect rounding.

Examples 1 and 2 in Table 3-3 are straightforward. The operations involve only addition or subtrac-
tion, and the values of x and y force the final result to stop in the third decimal place. In examples 3 and 
4, the operations involve only multiplication and division, which means that the final result can have no 
more significant figures than does x, which has only two.

Example 5, however, combines the operations of multiplication and addition. The first step is mul-
tiplication of x by y, giving 0.314578. Because x has only two significant figures, this product must be 
rounded to 0.31 before the next step. It is then added to z to give 92.1142, which must be rounded to 
92.11 because “0.31” has only two decimal places.

Example 6 is similar to 5. The first step is multiplication of y by z, giving 365.56432, which must be 
rounded to 365.6 because the value of y has four significant figures. This number is then added to x to 
give 365.7, which has only one decimal place because “365.6” has only one.

Examples 7 and 8 follow logic similar to that of examples 5 and 6.

The Exception of Repeated Measurements
Suppose that you quantify the drug methotrexate in the same patient specimen five times. The results, 
in “μmol/L,” are 62.33, 62.69, 61.56, 63.02, and 61.79. The average of these five values is

62.33 + 62.69 + 61.56 + 63.02 + 61.79
5

= 62.278

But remember that, in the addition step, the last significant figure in the sum must occupy the same place 
as the last significant figure in the measurement that has the greatest uncertainty, which in this case is 
the hundredths place:

62.33
62.69
61.56
63.02

+61.79
311.39

Next, we divide the sum by 5 to get the average:

311.39
5

= 62.278

The number “5” in the denominator is an exact count—not an estimation or a measurement; 
therefore, it does not bear on the number of significant figures in the final answer. But the sum in the 

 
 
x

 
 
y

 
 
z

 
 

operations

Raw Result  
from calculator  

(without rounding at any step)

Final Result  
(after proper rounding 

at each step)

0.079 3.982 91.8042 1 x + y + z 95.8652 95.865

2 x + y - z -87.7432 -87.743

3 x # y # z 28.879581 29

4 x , (y # z) 0.000216104 0.00022

5 (x # y) + z 92.118778 92.11

6 x + (y # z) 365.64332 365.7

7 (x , y) + z 91.824039 91.824

8 x + (y , z) 0.1223749 0.122

H TAble 3-3 Examples of Figure Significance in Combined Operations
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numerator has five significant figures, and the rule for multiplication and division requires, in this case, 
that the result of the calculation also have five significant figures. If we obey this rule, then the average is 
62.278. However, because each concentration has only four significant figures, the average itself should 
have no more than four; it cannot be more certain than any of the measurements that went into it. It 
would seem, then, that the correctly reported average is 62.28 μmol/L. But is it really?

Notice that the five concentrations, which range from 61.79 to 63.02, vary not only in the tenths 
and hundredths places but also in the ones place. It is not defensible to claim certainty to the hundredths 
place (62.28 μmol/L) when the first uncertain digit in the concentration is in the ones place. The value 
“62.28” means that the real concentration lies between 62.275 and 62.284, but there is no way to justify 
this conclusion with such a wide range of individual concentrations. As stated earlier in this chapter, 
we customarily report measurements such that only the last digit is uncertain. Therefore, the correctly 
reported average for our five concentrations must terminate in the ones place: 62 �mol/L.

This exception for repeated measurements reflects a flaw in the rules of figure significance. The final 
section of this chapter addresses this issue.

CheCkpoint 3-3

 1. Specify the number of significant figures that should be present in the result of each 
calculation.

 (a) 2.445 * 0.921 (b) 451 , 9.3 (c) 0.0022435 * 66.2778 (d) 2378 , 1.09880

 2. With the correct number of significant figures, give the result of each calculation.

 (a) 101 + 33.5 (b) 0.02775 - 0.0104 (c) 2.0046 + 0.11708 (d) 55.66 - 2.189

 3. With the correct number of significant figures, give the result of each calculation.

 (a) (2.33 + 0.988) * 66 (b) 
119 + 83

0.7558
 (c) (18 * 0.500) - 2.3

 (d) 3445.9 +
0.885
0.919

 (e) 0.08475 + 0.40(106)

 (f) 1.0556 - 0.00664 - 0.802 (g) 0.033000(1.229845 + 0.0009443 - 0.0730721)

 1. (a) 3 (b) 2 (c) 5 (d) 4

 2. (a) 135 (b) 0.0174 (c) 2.1217 (d) 53.47

 3. (a) 220 (b) 267 (c) 6.7 (d) 3446.9

      (e) 40 (f) 0.247 (g) 0.038205

SigniFicAnT FiguReS in exponenTiAl 
expReSSionS And logARiThmS
As Chapter 2 explains, an exponential expression, such as 8.332 * 106, has two parts: the significand 
(8.332) and the exponential term (106). All the significant figures in an exponential expression are in the 
significand; there are none in the exponential term.

The expression above is the same as 8,332,000, a number that consists of four significant figures. 
Thus, when written exponentially, all four of those figures appear in the significand.

8,332,000 = 8.332 * 106

Four significant 
figures

The significand:  
contains all four  

significant figures

f f

The exponential term: 
has no significant figures
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The exponential term tells us nothing about the number of significant figures; it only specifies the order 
of magnitude. After all, if the expression were 8.332 * 1013, there would still be four significant figures, 
even though the value has seven more zeros: 83,320,000,000,000.

How does one identify the significant figures in a logarithm? A logarithm comprises two parts: 
the characteristic, which is the set of numbers to the left of the decimal point, and the mantissa, 
which is the set of numbers to the right of the decimal point. Consider, for example, the logarithm of 
150,000, or 1.5 * 105:

5.17609

characteristic mantissa

f

The characteristic merely locates the decimal point, telling us only the power of 10, which in this case 
is 5. It is not a significant figure. The mantissa, however, does contain significant figures and must contain 
the same number of them as does the argument. In this case, because there are two significant figures in 
the argument (150,000), there must also be two in the mantissa. Calculated to two significant figures, 
therefore, the logarithm of 150,000 is 5.18. To convince yourself of this rule, consider the following table.

Regardless of the power of 10, every argument in this table has two significant figures. In fact, they 
are the same two: “1” and “5.” Clearly, the characteristic of the logarithm changes from one argument 
to the next, whereas the mantissa stays the same. Thus, the characteristic says nothing about the two 
significant figures, instead showing only the location of the decimal point. The mantissa is what captures 
the “1” and “5,” no matter how many zeros follow them in the argument.

Therefore, in counting significant figures in a logarithm, ignore the characteristic. Only the mantissa con-
tains significant figures, and it contains the same number of them as does the argument. For example, if the 
argument is 365, there are three significant figures, and the logarithm is reported as 2.562. If the argument 
is 2.3374 * 109, there are five significant figures, and the logarithm is reported as 9.36873.

CheCkpoint 3-4

 1. Count the significant figures in each of these expressions:

 (a) 3.772 * 10-5 (b) 0.110 * 105 (c) 9.6 * 1017 (d) 3.09400 * 105

 2. For each number, write its base-10 logarithm with the correct number of significant 
figures.

 (a) 1.22760 * 109 (b) 0.00330 (c) 600 (d) 10,460

 3. Write each number in exponential notation with the correct number of significant figures.

 (a) 5,003,000,000 (b) 25,010 (c) 0.0000116 (d) 0.00070070

 1. (a) 4  (b) 3  (c) 2  (d) 6

 2. (a) 9.089057  (b) -2.481  (c) 2.8  (d) 4.0195

 3. (a) 5.003 * 109  (b) 2.501 * 104  (c) 1.16 * 10-5  (d) 7.0070 * 10-4

Argument log10

1.5 0.17609

15 1.17609

150 2.17609

1500 3.17609

15,000 4.17609

150,000 5.17609

1,500,000 6.17609
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AbSoluTe And RelATive unceRTAinTy
There are more-rigorous ways to quantify uncertainty than relying on the number of significant figures. 
Practicing scientists usually express measurements in the form “x { y,”  where x is the value of the 
measurement and y is the uncertainty. The volume in Figure 3-1, for example, might be reported as 
“31.72 mL { 0.02 mL.”

Suppose you weigh a substance on an analytical balance and it gives a mass of 4.38 g; the balance’s 
stated uncertainty is 0.05 g. You record the mass as “4.38 g { 0.05 g,”  which implies that the true mass 
is between 4.33 and 4.43 g. The “0.05 g” is the absolute uncertainty, which simply represents the raw 
amount of uncertainty in the measurement.

The importance of that uncertainty, however, is captured in the relative uncertainty, which is the 
fraction of the measurement’s value represented by the absolute uncertainty:

relative uncertainty =
absolute uncertainty

measurement’s value

In other words, it tells us how large the uncertainty is in relation to the measurement. It is usually expressed 
as a percentage. In our example, the relative uncertainty is

0.05 g

4.38 g
= 0.011 = 1.1%

Note that the relative uncertainty has no units because the ratio cancels them out. Therefore, the measure-
ment may be expressed as “4.38 { 1.1%.”

If someone reports to you the measurement “22 mg,” you have no indication of uncertainty apart 
from the number of significant figures. Because the measurement was rounded to the nearest whole 
number, the true value is presumably between 21.5 and 22.5, making the uncertainty “{  0.5.”  There-
fore, the implied relative uncertainty is 0.5 out of 22:

0.5
22

= 0.023 = 2.3%

Consequently, the result of any calculation involving this value (22 mg) can have an implied relative 
uncertainty no smaller than 2.3%.

CheCkpoint 3-5

 1. Calculate the relative uncertainty for each of the following measurements.

 (a) 23.66 g { 0.03 g

 (b) 0.00557 moles { 0.00005 moles

 (c) 469 mL { 10 mL

 2. Calculate the implied relative uncertainty for each of the following measurements.

 (a) 0.571 g/L (b) 145 mg (c) 4 g

 1. (a) 0.1%  (b) 0.9%  (c) 2%

 2. (a) 0.09%  (b) 0.3%  (c) 13%

Rounding eRRoR
Rounding introduces bias. As mentioned earlier in the chapter, bias is an error that remains constant in 
a series of observations or calculations. To understand this point, consider a mass of 1.629 g, measured 
on a balance that the manufacturer claims has an uncertainty of 0.005 g. The true mass, then, is probably 
between 1.624 and 1.634 g.

If we round the measurement to “1.63 g,” the next person to read it will infer that the true measure-
ment is between 1.625 and 1.635 g. The new range is higher than the original by 0.001; this difference 
is a positive bias—a constant error—that will accompany this value into any subsequent calculations, 
affecting the outcomes accordingly.
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Rounding also sacrifices information about precision. For example, the value “3.8” implies a range 
of 3.75 to 3.85, which represents an uncertainty of 0.05. However, rounding “3.8” up to “4” changes the 
implied range to 3.5–4.5, an uncertainty of 0.5. The new uncertainty is 10 times greater than the previ-
ous uncertainty.

Keeping FiguRe SigniFicAnce in peRSpecTive
Illusory precision is something we want to avert. The rules of figure significance were developed to pre-
vent misunderstandings about the level of uncertainty in the measurements we share with each other. 
They keep us from implying more precision in our measurements than exists in the devices with which 
we make those measurements. Even so, the rules only approximate the uncertainty in our numbers, 
and sometimes that approximation is unacceptable. What follows are three examples of problems that 
illustrate why this chapter earlier described the rules as “guidelines.” In each example, we must check the 
rules against solid reasoning in order to find a trustworthy solution.

exAmple 1

Consider the following addition of four measured masses (in “grams”).

100 + 23 + 40 + 31

The reasonable answer is 194 grams (“190” if rounded to the nearest 10, or even “200” if 
rounded to the nearest 100). However, applying the rule of figure significance for  addition 
gives the preposterous total of 100. In this case, reasonableness trumps the rules.

exAmple 2

Consider the following 10 measured volumes (in “mL”). If we choose to report only the 
average of these volumes, and not the individual volumes themselves, what is the proper 
value?

89      95      102      93      97      100.      96      92      100.      95

The unrounded average is “95.9 mL.” The exception of repeated measurements, pre-
sented earlier, would remind us to write the average of these values such that only the 
last digit is uncertain. Unfortunately, there is no unquestionable digit in either the ones, 
tens, or hundreds place. Therefore, we might round the average up to “100” in order to 
report only one significant figure, but this would be grossly misleading for the following 
two reasons.

 1. As the reported average, “100” is too far from most of the values and from the 
unrounded average. There is no justification for declaring the average to be so near 
the upper end of these measurements.

 2. The value “100” has only one significant figure, implying that the average may be as 
high as 149 (which becomes “100” when rounded to one significant figure). That range, 
however, would be silly for the values given. So, we might try to circumvent this absur-
dity by making two digits significant, that is, by writing “100 (2 s.f.)” or “100.” But if we 
do, then the implied range for the average becomes 95-105, which is also indefensible 
because the highest measured volume is only 102. If we make all three digits significant 
by writing “100.” or “100 (3 s.f.),” then the implied range is 99.5-100.5, which is still too 
high and which carries more precision than exists in any of the measurements.

Like “100 (3 s.f.)” above, reporting the unrounded average of 95.9 would also imply 
too much precision. The best option, then, is to round the average to the nearest whole 
number, 96. Even though it implies that the uncertain “9” is certain, this value is a ratio-
nal compromise between inflating the average (by choosing “100”) and overstating the 
precision (by choosing “95.9”).
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Summary
rounding. one way to prevent this is to round to an even 
number whenever the final digit is “5,” whether doing so 
amounts to a rounding up or a rounding down.

 5. A significant figure is one that either is known with certainty 
or has been estimated.

 6. In a properly reported measurement, any nonzero digit is 
significant.

 7. A measurement is typically reported such that only the last 
digit is uncertain.

 8. Figure significance is related to precision, or the agreement 
among repeated measurements, rather than to accuracy, 
or the degree to which the value is correct.

 9. A trailing zero, which is any zero that follows the last non-
zero digit in a number, is significant only if there is a decimal 
point somewhere in the number.

 1. Rounding is about keeping a number consistent with the 
level of our certainty in it.

 2. Rounding whole numbers. (a) Identify the rounding digit. 
(b) If the first digit to the right is less than 5, then do not 
change the rounding digit but do change to “0” all digits to 
the right of it. (c) If the first digit to the right is 5 or greater, 
then add 1 to the rounding digit and change to “0” all 
digits to the right of it.

 3. Rounding decimal numbers. (a) Identify the rounding digit. 
(b) If the first digit to the right is less than 5, then do not 
change the rounding digit but do drop all digits to the 
right of it. (c) If the first digit to the right is 5 or greater, 
then add 1 to the rounding digit and drop all digits to the 
right of it.

 4. Under the standard rules for rounding, the average of a 
set of numbers is higher after rounding than it is before 

exAmple 3

Suppose we measure the volume of a liquid to be 6.97 mL in a cylinder that has a stated 
uncertainty of 0.05 mL. We properly record the volume as “6.97 mL { 0.05 mL,”  realizing 
that the true volume falls between 6.92 and 7.02 mL. Rounding this number, therefore, 
presents a puzzle in that the digit in the ones place is questionable. Because only the last 
digit in our measurement should be uncertain, is it reasonable to round off to one decimal 
place, or must we stop at a whole number?

We have two options. First, we could simply round the volume to “7 mL.” It would be 
correct for the entire range from 6.92 to 7.02, although it has only one significant figure 
and, thus, less precision than the measurement itself. Second, we could round the reading 
to “7.0,” which has a precision closer to that of the original, but which assumes the true 
reading to be at least 6.95. We can settle the issue by comparing the implied relative uncer-
tainties of the two rounded values to the relative uncertainty of the original measurement.

 
value (ml)

Absolute  
uncertainty (ml)

implied  
minimum (ml)

implied  
maximum (ml)

Relative 
uncertainty

6.97 0.05 6.92 7.02 0.7%

7 0.5 6.5 7.5 7%

7. 0 0.05 6.95 7.05 0.7%

As the above table shows, rounding to one decimal place (two significant figures) 
gives the same relative uncertainty as there is in the original measurement. Thus, if we 
round off, our choice should be “7.0 mL.” generally, a raw measurement should be 
rounded to the number of digits most consistent with the measurement’s uncertainty.

The Upshot
Although the rules of figure significance keep us mindful about overestimating precision, they do not 
always yield a good answer. Never apply them uncritically. They do not substitute for mathematical 
common sense, in the same way that calculators do not substitute for fast arithmetic skills nor statistics 
for sound scientific judgment.
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 17. In a logarithm, the characteristic is the set of digits to the 
left of the decimal point, and the mantissa is the set of 
digits to the right of the decimal point.

 18. In a logarithm, only the mantissa contains significant figures.
 19. Absolute uncertainty is the raw amount of uncertainty in a 

measurement. Relative uncertainty is the ratio of the abso-
lute uncertainty to the value of the measurement (usually 
expressed as a percentage):

relative uncertainty =
absolute uncertainty

measurement’s value

  Implied relative uncertainty is relative uncertainty that has 
been calculated from an absolute uncertainty assumed 
from the number of significant figures in a value.

 20. Rounding sacrifices information about precision and intro-
duces bias, which is error that remains constant in a series 
of observations or calculations.

 21. Because the rules of figure significance do not always yield 
a good answer, results arising from the application of those 
rules should be checked for reasonableness.

 10. A leading zero, which is any zero that precedes the first 
nonzero digit in a number, is never significant.

 11. An embedded zero, which is any zero that occurs between 
two nonzero significant figures, is significant.

 12. The result of a calculation involving only multiplication and/
or division can have no more significant figures than there 
are in the measured quantity with the fewest.

 13. In addition or subtraction operations, the last significant 
figure in the final result must occupy the same place as 
the last significant figure in the measurement that has the 
greatest uncertainty.

 14. When a calculation combines operations (multiplication, 
division, addition, and subtraction), apply the rules for fig-
ure significance before and after every step involving addi-
tion or subtraction.

 15. Averaging can be an exception to the rules for figure sig-
nificance. An average should be reported such that only the 
last digit is uncertain, even if the individual measurements 
have more significant figures.

 16. All the significant figures in an exponential expression are 
in the significand; there are none in the exponential term.

Practice Problems
 1. (LO 1) Round each number to the nearest tenth.

 (a) 42.77 (b) 0.24 (c) 106.03

 (d) 8.95 (e) 0.83 (f) 50.09

 (g) 2866.04 (h) 17.08 (i) 7.042

 (j) 33.566 (k) 0.705 (l) 91.229

 2. (LO 1) Round each number to the nearest 10.

 (a) 13,406 (b) 19 (c) 505

 (d) 65 (e) 377 (f) 4601

 (g) 1007 (h) 221 (i) 48.3

 (j) 9.074 * 103 (k) 2.2855 * 104 (l) 603

 3. (LO 1) Round each number to the nearest whole.

 (a) 2.5 (b) 27.8 (c) 103.2

 (d) 99.6 (e) 18,404.7 (f) 4.03

 (g) 55.19 (h) 600.0 (i) 1003.3

 (j) 8.22 (k) 9090.9 (l) 13.7

 4. (LO 1) Round each number to the nearest thousandth.

 (a) 4.1336 (b) 0.9315 (c) 12.0020

 (d) 8.4 * 10-3 (e) 20.0092 (f) 20.0096

 (g) 7.15 * 10-2 (h) 0.20335 (i) 61.7743

 (j) 15.0005 (k) 2.49128 (l) 185.2366

 5. (LO 1) Round each number to the nearest hundredth.

 (a) 5.022 (b) 199.755 (c) 0.691

 (d) 1.8 * 10-2 (e) 2.505 (f) 35.384

 (g) 0.027 (h) 0.996 (i) 40.531

 (j) 0.016 (k) 9.080 (l) 58.111

 6. (LO 5) The following numbers represent measurements 
(without units). Count the significant figures in each.

 (a) 44.73 (b) 100 (c) 0.227

 (d) 83.602 (e) 6912 (f) 200.

 (g) 17.0093 (h) 466 (i) 0.0065

 (j) 40.0 (k) 1.882660 (l) 3

 (m) 144,000 (n) 0.0000010 (o) 4050

 (p) 513.05 (q) 2.00000 (r) 5088

 (s) 6.2 (t) 70.

 7. (LO 8) The following exponential expressions represent 
measurements. Count the significant figures in each.

 (a) 3.66 * 10-4 (b) 1.067 * 105

 (c) 7.1 * 103 (d) 9.8080 * 10-3

 (e) 2.000 * 106 (f) 4.0061 * 10-9

 (g) 5.0 * 1013 (h) 1.7300 * 10-8
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Row

mass of an  
object (g)

implied 
Range (g)

implied Relative 
uncertainty

1 480

2 480.

3 480.0

4 48

 (i) 6 * 105 (j) 7.702 * 102

 (k) 8 * 10-12 (l) 3.0001 * 104

 8. (LO 5, 8) With the correct number of significant figures, 
write the logarithm of each exponential expression in 
problem 7 above.

 9. (LO 7) Honoring figure significance, write the average of 
each set of measurements.

 (a) 0.0881, 0.0892, 0.0886, 0.0865, 0.0873

 (b) 2.66, 2.54, 2.64, 2.70, 2.61

 (c) 64, 58, 59, 61, 60, 59

 (d) 1.24, 1.25, 1.24, 1.23, 1.24, 1.23

 (e) 7.55 * 104, 7.70 * 104, 7.64 * 104, 7.59 *
104, 7.57 * 104

 10. (LO 8) Count the significant figures in each of the following 
exponential expressions.

 (a) 1.775 * 10-8 (b) 5.20 * 105

 (c) 9.0010 * 10-4 (d)   6.0000 * 106

 (e) 4.097 * 1011 (f) 2.3 * 10-3

 11. (LO 8) Count the significant figures in each of the following 
logarithms.

 (a) 0.663 (b) 8.7100

 (c) -2.090 (d)    4.2239

 (e) -9.0 (f) -6.77881

 12. (LO 2) Round the values in each of the following data sets 
to the nearest whole (round up values ending in “5”). For 
which of the data sets would the average change if we 
rounded values ending in “5” to even numbers rather than 
rounding them up? Try to answer this question without 
calculating the averages outright.

 (a) 13.3, 13.5, 13.2, 13.6, 13.9, 13.5

 (b) 139.7, 137.5, 136.5, 136.1, 134.5, 136.6

 (c) 45.0, 42.4, 46.5, 43.5, 46.6, 42.5

 (d) 1.8, 1.9, 1.5, 1.8, 1.9, 1.7

 13. (LO 9) Calculate the relative uncertainty of each 
measurement.

 (a) 4.667 { 0.005

 (b) 0.00293 { 0.00002

 (c) 172 { 5

 14. (LO 9) Calculate the implied relative uncertainty of each 
measurement.

 (a) 0.48 (b) 260 (c) 16.3 (d) 30.

 (e) 5.14 (f) 200 (2 s.f.) (g) 300 (h) 0.075

 15. (LO 6) Obeying the rules of figure significance, write the 
solution to each of the following problems.

 (a) (19.2 + 8.66) * 1.3

 (b) 6.01 * 2.033

 (c) 0.03365 , 4.480

 (d) 13.62 - (7.9 * 1.44)

 (e) 7.307 - 6.224 + 10.000

 (f) 5667 + (8.1 * 0.9) - 140.6

 (g) 
70.9
3.662

 ¢ 13.8
2.0005

≤
 (h) 

0.8883
7.2

 (3.4 + 5.55)

 (i) (3.445 * 105) + 100,000

 (j) (1.9077 * 10-3) * 2.0

 16. (LO 1) Round each of the following values to the nearest 
whole number.

 (a) 39.01 (b) 25.48 (c) 19.66 (d) 89.47

 (e) 60.80 (f) 7.51 (g) 32.11 (h) 103.62

 (i) 2.39 (j) 50.09 (k) 29.99 (l) 122.46

 (m) 1.49 (n) 76.50 (o) 10.32 (p) 99.52

 17. (LO 1, 10) Round each of the values above (a through p) to 
one decimal place and then round that value to the nearest 
whole number. Is there bias relative to the corresponding 
averages in problem 16? If so, what is the magnitude of 
the bias?

 18. (LO 3, 4, 5, 9) Complete the following table. What rule 
of figure significance does the completed table confirm? 
Explain.
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Contextual Problems
 1. Answer the following questions in terms of figure signifi-

cance or uncertainty.

 (a) You must replace the ultraviolet lamp in your automated 
analyzer periodically. Manufacturer A touts its lamp as 
having an average life expectancy of 2118.6 hours. Why 
is this claim suspect?

 (b) Suppose the manufacturer in part a above claims 2100 
hours for its own lamp and 2060 hours for its competi-
tor’s lamp. Is this comparison meaningful? Explain.

 (c) Your method for quantifying acetaminophen in serum 
has given a concentration of 9.66 μg/mL for one patient 
and 102.17 μg/mL for another. What do these particular 
values imply about the method’s precision, whether or 
not that implication is true?

 (d) For patient X, your analyzer returns a concentration for 
retinol-binding protein of 2.2 mg/dL. The concentration 
3 months later is 6.1 mg/dL. Is the physician correct in 
saying that the concentration rose 2.77-fold during that 
period? Explain.

 2. (LO 9, 11) An analyzer returns a result for a hormone in 
urine as 8.94 { 0.05 pg/mL. Determine whether it would 
be better to round this result to one decimal place or to a 
whole number.

 3. (LO 2, 4, 9, 10, 11) Sirolimus (Rapamune® ) is an immu-
nosuppressant drug used to inhibit the rejection of a 
transplanted kidney. Your laboratory is monitoring the 
concentration of sirolimus in the blood in a cohort of 
research patients. The analyzer gives the concentration 
with two decimal places, but your laboratory information 
system accepts the result with only one decimal place. 

The researcher who uses the result with one decimal place 
rounds it to the nearest whole number. Ten concentrations 
appear below.

4.48       4.99       3.46       6.82       7.74  
9.16       4.90       5.72       3.27       4.85       (ng/mL)

 (a) Calculate the best value for the average of the raw data.

 (b) Calculate the best value for the average of the data that 
have been rounded to one decimal place.

 (c) Calculate the bias introduced by rounding the raw data 
from two decimal places to one.

 (d) Calculate the best value for the average of the data after 
the researcher has rounded them.

 4. The RBCs in a particular whole-blood specimen are counted 
three times: first by an automated analyzer, second by a 
technologist, and third by a physician. These three counts 
are treated as inexact because (a) they represent estima-
tions based on a small sampling of the blood specimen, 
and (b) neither a person nor a machine would ever count 
4 million individual cells. Furthermore, during the counting 
procedure, some cells might be accidentally overlooked, 
misidentified, or counted more than once. Calculate the 
average of the three counts and discuss the rounding 
options, including the strengths and weaknesses of each.

count  
(Rbcs/μl)

Analyzer 4,661,000

Technologist 4,715,000

physician 4,809,000

Go to www.myhealthprofessionskit.com <http://www.myhealthprofessionskit.com/> to access the Com-
panion Website created for this textbook. Simply select “Clinical Laboratory Science” from the choice of 
disciplines. Find this book and log in using your username and password to access additional practice 
problems, answers to the practice and contextual problems, additional information, and more.

PEARSON

www.myhealthprofessionskit.com
http://www.myhealthprofessionskit.com/
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The MeTric SySTeM
In contrast to the U.S. system, the metric system has only one basic unit for length, one for volume, and 
one for weight.

Length

inch (in)

foot (ft) = 12 inches

yard (yd) = 3 feet

mile (mi) = 1760 yards = 5280 feet

Volume

cup (c)

pint (pt) = 2 cups

quart (qt) = 2 pints

gallon (gal) = 4 quarts

Weight

ounce (oz)

pound (lb) = 16 ounces

(short) ton = 2000 pounds

Length meter (m)

Volume liter (L)*

Weight** gram (g)

* The symbol for “liter” is usually a capital “L” because in some typefaces the lowercase letter “l” is  
confusingly similar to the number “1” and to the letter “I.”
** Although we use the terms “weight” and “mass” interchangeably, mass is the amount of matter in 
a substance, whereas weight is the gravitational force on that matter. Under ordinary circumstances in 
the laboratory, we use the two terms as though they had the same meaning. In some other contexts,  
however, they are not interchangeable.

Prefixes and How to Interpret Them
The metric system exploits the convenience of the number “10.” As Table 4-1 H shows, we attach a 
prefix to the basic unit of measure to create a decimal multiple or submultiple. The purpose of pre-
fixes is to reduce the number of zeros in the value; it is much easier to write “μg” than it is to write 
“0.000001 g” or “1 * 10-6 g.”

Let us consider some examples, starting with the basic unit of “gram” (g), which is about the weight 
of a typical paper clip. If we have an object that weighs 1000 g, we can report the weight as such, or we 
can call it “1 kilogram” (1 kg). As Table 4-1 shows, 1 kg is the same as 1000 of its basic unit, the gram:

1 kg = 1000 g

If we have an object that weighs 0.001 g, we can report the weight as such, or we can call it “1 milligram” 
(1 mg). As Table 4-1 shows, 1 mg is the same as 

1
1000

, or one-thousandth, of its basic unit, the gram:

1 mg = 0.001 g

This chapter presents systems of measurement, their units and symbols, and strategies and procedures 
for converting among them.

UniTed STaTeS cUSToMary SySTeM of UniTS
The United States Customary System of Units is also called the “English Imperial” or “American” system. 
The most commonly used units in this system appear below.
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Likewise, a microliter (μL) is a millionth of a liter:

1 μL =
1

1,000,000
 L = 0.000001 L = 10-6 L

A kilometer (km) is 1000 meters:

1 km = 1000 m = 103 m

Converting Between Units
It is often necessary to convert one unit into another, whether within one system or between systems. 
Always remember that in moving to a larger unit, we divide; we do not multiply. Conversely, in moving to 
a smaller unit, we multiply; we do not divide. This is true in all unit conversions, regardless of the system. 
For example, in moving from “minutes” to “hours,” the number goes down, not up:

60 minutes S 1 hour

In moving to the larger unit (“hours”), we have divided by “60.”
However, in moving from “hours” to “minutes,” the number goes up, not down; we multiply by 

“60” in moving to the smaller unit:
1 hour S 60 minutes

In the metric system, there are several equally effective ways to think through a conversion involving 
prefixes. We present two approaches now and two more later.

approach 1

This approach comprises two steps.

Step 1 In Table 4-1, locate the starting prefix and the target prefix and note their cor-
responding powers of 10. Subtract the target power of 10 from the starting power of 10:

starting power of 10 - target power of 10 = ∆x

Step 2 Multiply the starting value by 10∆x, where ∆x is the difference between the 
powers of 10.

Consider, for example, the conversion of “100 g” to “kg.”

 
prefix

 
Symbol

factor  
(How many, or how much, of the basic unit)

power of 10  
(10x)

 
american Term

giga G 1,000,000,000 9 billion

mega M 1,000,000 6 million

kilo k 1000 3 thousand

hecto h 100 2 hundred

deka (or deca) da 10 1 ten
no prefix.  

This is the level of the basic  
unit (meter, liter, gram)

1 0 one

deci d  1/10 (0.1) -1 one-tenth

centi c  1/100 (0.01) -2 one-hundredth

milli m  1/1000 (0.001) -3 one-thousandth

micro μ*  1/1,000,000 (0.000001) -6 one-millionth

nano n  1/1,000,000,000 (0.000000001) -9 one-billionth

pico p  1/1,000,000,000,000 (0.000000000001) -12 one-trillionth

femto f  1/1,000,000,000,000,000 (0.000000000000001) -15 one-quadrillionth

atto a  1/1,000,000,000,000,000,000 (0.000000000000000001) -18 one-quintillionth

*This is the proper symbol for “micro,” although some clinics and hospitals prefer the abbreviation “mc” because the handwritten letter “μ” can be  mistaken 
for “M” or “m”.

H TabLe 4-1 Metric Prefixes and the Arithmetic Relationships They Indicate
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Step 1 

prefix Unit power of 10

Starting Milli milligram -3

Target Micro microgram -6

prefix Unit power of 10

Starting none gram 0

Target Kilo kilogram 3

1000 �g

100 �g0.1 mg

1 mg

1000 g

100 g 0.1 kg

1 kg

∆x = Starting power of 10 - Target power of 10 = 0 - 3 = -3

Step 2 

(Starting value) * 10∆x = 100 * 10-3 = 100 , 1000 = 0.1

Therefore, 100 g = 0.1 kg
notice that, in moving to the larger unit (g S kg), the value went down, not up; the 

procedure was the same as division by 1000. Here is a way to visualize the conversion:

now let us take an example that converts in the opposite direction, say, from “0.1 
mg” to “μg.”

Step 1 

∆x = Starting power of 10 - Target power of 10 = (-3) - (-6) = 3

Step 2 

(Starting value) * 10∆x = 0.1 * 103 = 0.1 * 1000 = 100

Therefore, 0.1 mg = 100 μg

notice that, in moving to the smaller unit (mg S μg), the value went up, not down; the 
procedure was the same as multiplication by 1000. Here is a way to visualize the conversion:
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Let us consider a final example that has a numeral other than “0” or “1,” say, the conversion of 
0.382 mg into “μg.”

Using approach 1:

Step 1. 
Starting power of 10 - target power of 10 = ∆x

(-3) - (-6) = 3

Step 2. 
0.382 mg * 103 = 382 μg

Using approach 2:

Step 1. 

larger factor

smaller factor
=

0.001
0.000001

= 1000

Step 2. Conversion is toward the smaller unit. Therefore, we multiply:

0.382 mg * 1000 = 382 μg

approacheS 3 and 4

Dimensional analysis and the ratio method are two more approaches to solving problems 
of this type, but because their usefulness extends far beyond the conversion of metric 
prefixes, we treat them in their own later sections of this chapter.

approach 2

This approach also comprises two steps.

Step 1 In Table 4-1, locate the starting prefix and the target prefix and note their 
 corresponding factors. Calculate the ratio of the larger to the smaller.

larger factor

smaller factor

Step 2 If the conversion is going toward the larger unit, then divide the value by the 
above ratio. If it is going toward the smaller unit, then multiply.

Let us turn to the same two examples we saw in the first approach. In the conversion 
of “100 g” into “kg,” the larger factor is 1000 (for “kilo”), and the smaller is 1 (for “gram,” 
a basic unit). Therefore, the ratio of the larger to the smaller is

1000
1

= 1000

Because the conversion is going toward the larger unit, we divide the original value 
by the ratio, which is 1000:

100
1000

= 0.1 kg

In the second example, we carry out a conversion toward the smaller unit, that is, from 
“0.1 mg” to “μg”. The larger factor is 0.001 (for “milli”), and the smaller is 0.000001 (for 
“micro”). Therefore, the ratio of the larger to the smaller is

0.001
0.000001

= 1000

Because the conversion is going toward the smaller unit, we multiply the original value 
by the ratio, which is 1000:

0.1 * 1000 = 100 μg
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inTernaTionaL SySTeM of UniTS
The International System of Units, abbreviated “SI” for the French Système International d’Unités, is a 
modern version of the metric system. Established in 1960, the SI has become the most widely used sys-
tem of measurement in the world, although the United States still employs customary units alongside it.

There are seven basic units of measurement in the SI.

Length meter (m)

Weight (Mass) kilogram (kg)

amount of Substance mole (mol)

Time second (s)

electric current ampere (A)

Temperature kelvin (K)

Luminous intensity candela (cd)

Some non-SI units are acceptable for use within the SI. In the clinical laboratory, the most important 
of these units is the “liter.” Furthermore, it is acceptable to use metric prefixes with SI units, although 
there is one exception. Because the basic unit “kilogram” already has a multiplying prefix, we may not 
attach another prefix to it. For example, we may not report a “microkilogram” (μkg). Instead, we attach 
a prefix to the unit “gram” (that prefix would be “milli”).

eqUiVaLencieS beTWeen SySTeMS
It is possible to interconvert U.S. customary units and metric units. The following table lists the most 
common equivalencies used in the clinical laboratory.

CheCkpoint 4-1

Carry out the following conversions.

 (a) 1 dL S mL  (b) 100 μL S L  (c) 4 cg S mg

 (d) 150 cm S m  (e) 2.0 * 104 ng S kg  (f) 6.7 * 10-3 L S mL

 (a) Using approach 1:

∆x = (-1) - (-3) = 2    1 dL * 102 = 100 mL

Using approach 2:

larger factor

smaller factor
=

0.1
0.001

= 100    1 dL * 100 = 100 mL

 (b) 0.0001 L  (c) 40 mg  (d) 1.5 m  (e) 2.0 * 10-8 kg  (f) 6.7 mL

Length Volume Weight

1 in = 2.54 cm

1 yd = 0.914 m

1 mi = 1.609 km

1 c = 236.6 mL

1 gal = 3.785 L

1 oz = 28.35 g

1 lb = 0.454 kg

1 cm = 0.394 in

1 m = 1.094 yd

1 km = 0.622 mi

1 mL = 0.00423 c

1 L = 0.264 gal

1 g = 0.0353 oz

1 kg = 2.20 lb
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The MoLe
A mole, which we symbolize as “mol,” is the amount of a substance that consists of as many entities 
(molecules, ions, particles, etc.) as there are atoms in exactly 12 grams of the element 12C (carbon-12). 
Although that definition is just a bit convoluted, the number in question is

6.022137 * 1023 or 602,213,700,000,000,000,000,000

We call this Avogadro’s number.1 In other words, 12 grams of  12C consists of 
602,213,700,000,000,000,000,000 atoms. The classic illustration of this number’s unimaginable  enormity 
is to try to appreciate an Avogadro’s number of dollars. If a person started with 6.022137 * 1023 dollars, 
and spent a billion dollars every second for 75 years, more than 99.99% of the starting balance would still 
be available.

Like the prefixes on basic units of measurement, the term “mole” simplifies quantities by deleting 
zeros. After all, it is much easier to talk about frequent-flyer “miles” than it is to talk about frequent-flyer 
“inches.” To erase even more zeros, we can affix those same metric prefixes to “mole” or “mol.” For example,

 0.001 mol = 1 millimole = 1 mmol

 0.000001 mol = 1 micromole = 1 μmol

 0.000000001 mol = 1 nanomole = 1 nmol

 0.000000000001 mol = 1 picomole = 1 pmol

If the masses of two atoms differ, then a mole of one substance weighs more than a mole of the 
other. Consequently, a mole of 12C atoms weighs 12.0 grams, and a mole of Fe (iron) atoms weighs 
55.8 grams.

The formula weight of a substance is the sum of all the atomic weights in the formula. For example, 
the formula weight of water (H2O) is 18.0 g:

2 * 1.0 g + 1 * 16.0 g

 H atoms O atom

Therefore, one mole of water molecules weighs 18.0 grams. Likewise, a mole of glucose (C6H12O6) weighs 
180 grams:

6 * 12.0 g + 12 * 1.0 g + 6 * 16.0 g

 C atoms H atoms O atoms

The molar mass of a substance is numerically equal to the formula weight and is defined as the mass 
of one mole of the substance. Table 4-2 H lists several selected elements and their average atomic weights.

1The value of 6.023 is also used widely as the significand.  Because the difference between 6.023 and 6.022 is only 0.02%, this book 
uses both values.

element average atomic Weight (g/mol)

Hydrogen (H)  1.01

Calcium (Ca) 40.08

Carbon (C) 12.01

Chlorine (Cl) 35.45

Cobalt (Co) 58.93

Magnesium (Mg) 24.31

nitrogen (n) 14.01

oxygen (o) 16.00

Phosphorus (P) 30.97

Potassium (K) 39.10

Sodium (na) 22.99

Sulfur (S) 32.07

H TabLe 4-2 Selected Elements and Their Atomic Weights

f f

f f f
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CheCkpoint 4-2
Compute the formula weight of each of the following chemical compounds.

 (a) Co2  (b) H2S  (c) MgSo4  (d) na2o

(a) (1 * 12.01 g/mol) + (2 * 16.00 g/mol) = 44.01 g/mol

(b) 34.09 g/mol (c) 120.38 g/mol  (d) 61.98 g/mol

exaMpLe 1

To convert “3.0 in” to “cm,” we employ the equivalence of

1 in = 2.54 cm

From this equivalence, we can create two unit factors:

1 in
2.54 cm

 and 
2.54 cm

1 in

next, we multiply our original value, “3.0 in,” by the unit factor that gives us our target 
unit, “cm”:

3.0 in *
2.54 cm

1 in
= 7.6 cm

The units of “in” cancel, leaving the units of “cm”, and we conclude that 3.0 inches is the 
same as 7.6 centimeters.

To convert in the reverse direction, say, from “9.1 cm” to “in,” we follow the same 
procedure by multiplying our original value by the unit factor that gives us our target unit:

9.1 cm *
1 in

2.54 cm
= 3.6 in

The units of “cm” cancel, leaving the units of “in.”

diMenSionaL anaLySiS
Mentioned earlier, dimensional analysis is a unit-conversion technique based on the fact that any quan-
tity can be multiplied by “1” without its value being changed. We use this technique to convert one unit 
into another by multiplying by what we call “unit factors.” Let us consider four examples.

exaMpLe 2

It is sometimes necessary to string several unit factors together. For example, let us 
calculate the number of ounces in one ton. We start with “1 ton,” identify our target as 
“ounces”, and then note any unit factors that link “tons” to “ounces.”

conversion: 1 ton S ? oz

relevant Unit factors:

2000 lb
ton

 
ton

2000 lb
        

16 oz
lb
 

lb
16 oz

Solution: 1 ton *
2000 lb

ton
*

16 oz
lb

= 32,000 oz

We solve the problem by multiplying the original value (“1 ton” in this case) by unit fac-
tors in such a way that only the target units emerge at the end of the calculation. The units of 
“ton” cancel, as do the units of “lb.” We conclude that there are 32,000 ounces in one ton.
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exaMpLe 3

Let us now try a slightly longer conversion, one that is more germane to laboratory work. 
How many micromoles are there in 6.0 milligrams of glucose (molar mass = 180 g/mol)?

conversion: 6.0 mg S ? �mol

relevant Unit factors:

1000 mg

g
 

g

1000 mg
  

180 g

mol
 

mol
180 g

  
1 * 106μmol

mol
 

mol
1 * 106μmol

Solution: 6.0 mg *
g

1000 mg
*

mol
180 g

*
1 * 106 μmol

mol
= 33 μmol

As in the earlier example, we solve this problem by multiplying the original value (6.0 mg) 
by unit factors in such a way that only the target units emerge at the end of the calcu-
lation. The units of “mg,” “g,” and “mol” cancel. For glucose, then, we conclude that 
6.0 mg is the equivalent of 33 μmol.

exaMpLe 4

This example of dimensional analysis involves a concentration. Suppose we must convert 
a test result of 0.739 mmol/L to “nmol/mL.” Although the strategy is the same as in the 
preceding two examples, we now have two units to convert.

conversion: 0.739 mmol/L S ? nmol/mL

relevant Unit factors:

  
1000 mmol

mol
 

mol
1000 mmol

  
1 * 109 nmol

mol
  

mol

1 * 109 nmol
  

1000 mL
L

 
L

1000 mL

Solution: 
0.739 mmol

L
*

mol
1000 mmol

*
1 * 109 nmol

mol
*

L
1000 mL

= 739 nmol/mL

CheCkpoint 4-3

 1. Using dimensional analysis, convert “890 nmol/L” to “μmol/dL.”

890 nmol
L

*
mol

1 * 109 nmol
*

1 * 106 μmol
mol

*
L

10 dL
= 0.089 μmol/dL

 2. Using dimensional analysis, convert “0.864 g of Co2”  to “mmol of Co2.”

0.864 g CO2 *
mol CO2

44.01 g CO2
*

1000 mmol CO2

mol CO2
= 19.6 mmol CO2
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TeMperaTUre ScaLeS
There are three temperature scales, each with its own history and utility. On the Fahrenheit scale, the 
freezing point of water (at sea level) is 32 degrees (°F) and the boiling point is 212°F, setting these two 
temperatures 180F° apart. On the Celsius scale, however, water freezes at 0°C and boils at 100°C, the 
interval being 100C°.

Thus, 180 Fahrenheit degrees covers the same range as 100 Celsius degrees, making each Celsius 
degree 1.8 times a Fahrenheit degree:

180 Fo

100 Co = 1.8 Fo/Co

The raTio MeThod
The ratio method is another way to convert between units. For example, if we want to convert “13 yards ” 
to “feet,” we can set up an equation of ratios and then cross-multiply:

3 ft
yd

=
x

13 yd

(3 ft)(13 yd) = (1 yd)x

(3 ft)(13 yd)

yd
= x

39 ft = x

For longer conversions, a sequence of ratio calculations can substitute for dimensional analysis. 
Consider example 3 above, the conversion of “6.0 mg” of glucose to “micromoles.” The order in which 
we convert the units is

mg S g S mol S μmol

This is the same order in which we converted them using dimensional analysis above.

 Conversion 1 (mg S g)   
1000 mg

g
=

6.0 mg

x

 x = 0.0060 g

 Conversion 2 (g S mol)  
180 g

mol
=

0.0060 g

x

 x = 3.3 * 10-5 mol

Conversion 3 (mol S mmol )  
1 * 106 μmol

mol
=

x
3.3 * 10-5 mol

 x = 33 μmol

CheCkpoint 4-4

Using the ratio method, carry out the following conversions.

 (a) 6.2 m S yd  (b) 535 μL S mL  (c) 0.5844 g naCl S μmol naCl

 (a) 
1.094 yd

m
=

x
6.2 m

 x = 6.8 yd

 (b) 0.535 mL  (c) 10,000 μmol = 1.0 * 104 μmol
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There are two formulas for converting between Fahrenheit and Celsius temperatures:

oF = ¢oC *
9
5
≤ + 32o

oC =
5
9

 (oF - 32o)

The third temperature scale bears the name of its developer, Lord Kelvin. On the Kelvin scale, the 
zero-degree point corresponds to the theoretical absence of all thermal energy, “absolute zero.” A tem-
perature on the Kelvin scale is represented by “K,” with no degree symbol.

Each degree, or increment, on the Kelvin scale is a “kelvin” (all lowercase). Each increment on the 
Kelvin scale is the same as an increment on the Celsius scale. Therefore, the two scales have a simple 
relationship, and the formula for interconverting them is

K = °C + 273.15

Practice Problems
 1. (LO 1, 2, 4, 5) Carry out each of the following unit 

conversions.

 (a) 3.1 mL S μL  (b) 420 ng S mg

 (c) 0.002 mL S μL  (d) 0.78 μg S ng

 (e) 8.5 dL S L   (f) 1445 mg S g

 (g) 0.0364 L S mL  (h) 13 pg S ng

 (i) 620 nmol S μmol   (j) 9.7 * 10-5 mol S mmol

 (k) 4.0 dL S mL   (l) 73 μg S mg

 (m) 400 μL S mL  (n) 2.5 * 10-4 μg S pg

 (o) 6.09 * 104 μmol S mol  (p) 0.62 L S dL

 (q) 705 μmol S pmol   (r) 2 ng S pg

 2. (LO 6) Calculate the molar mass of each of the following 
substances.

 (a) KCl  (b) nH3  (c) K3Po4  (d) na2S  (e) MgCl2

Summary
without its value being changed. We use this technique 
to convert one unit into another by multiplying by “unit 
factors.”

 8. The ratio method is useful in the conversion of units. An 
equation of ratios is established, and then cross-multipli-
cation gives the value of the unknown quantity. For longer 
conversions, a sequence of ratio calculations can substitute 
for dimensional analysis.

 9. There are three temperature scales: Fahrenheit, Celsius, 
and Kelvin. Their values are interconvertible by these 
equations:

oF = ¢oC *
9
5
≤ + 32o

oC =
5
9

 (°F - 32o)

K = °C + 273.15

 1. The metric system has only one basic unit for length, one 
for volume, and one for weight. The United States Custom-
ary System of Units has several units for each quantity.

 2. The metric system is built on the number “10.” Prefixes 
create decimal multiples and submultiples of basic units.

 3. The International System of Units (SI) has seven basic units 
but permits the use of some non-SI units.

 4. U.S. customary units and metric units are interconvertible.
 5. The mole (“mol”) is the amount of a substance that 

consists of as many entities (molecules, ions, particles, 
etc.) as there are atoms in exactly 12 grams of the ele-
ment 12C (carbon-12). The number is 6.022137 * 1023 or  
602,213,700,000,000,000,000,000. It is called Avogadro’s 
number. We can affix metric prefixes to “mole” or “mol.”

 6. The formula weight of a substance is the sum of all the 
atomic weights in the formula. The molar mass of a sub-
stance is numerically equal to the formula weight and is 
defined as the mass of one mole of the substance.

 7. Dimensional analysis is a problem-solving technique based 
on the fact that any quantity can be multiplied by “1” 
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 3. (LO 4, 5, 7) For each of the following substances, suppose 
you have either the actual mass or the actual number of 
moles specified. Complete the table by supplying the 
 missing information.

 5. (LO 8) Convert each of the following Fahrenheit tempera-
tures to its Celsius equivalent.

 (a) 72°F  (b) 230°F         (c) -7°F  (d) 45°F   (e) 10°F

 6. (LO 8) Convert each of the following Celsius temperatures 
to its Kelvin equivalent.

 (a) 0°C  (b) 100°C  (c) -273.15°C

 7. (LO 3, 4, 5) Carry out the following conversions.

 (a) 53 km S mi  (b) 5.6 in S cm  (c) 128 lb S kg

 (d) 2 kg S oz  (e) 31 ft S m  (f) 3500 yd S km

 (g) 8.9 L S gal  (h) 0.20 cups S mL  (i) 6.2 qt S L

Contextual Problems
 1. (LO 1, 2, 4) If the typical red blood cell has a volume of 

90 fL, then how many such cells could theoretically occupy 
a volume of 1 mL?

 2. (LO 1, 2, 4, 5) One of the automated instruments in your 
laboratory requires the preparation of a special clean-
ing solution, made by mixing 30 mL of concentrate with 
enough water to bring the final volume to 250 mL. How 
much concentrate do you use to make 1 L of the cleaning 
solution?

 3. (LO 2, 4, 5) On a balance that reads in “grams,” you must 
weight out 450 mg of a substance. How many grams does 
this represent?

 4. (LO 2, 4, 5) Using a pipet that reads in “microliters,” you 
must deliver 0.080 mL of a solution. How many microliters 
does this represent?

 5. (LO 2, 4, 5) Some of your laboratory’s instruments return 
test results in units that must be converted into other units 
before being released into the hospital information sys-
tem. Convert each of the following results into the units 
specified.

 (a) 628 pg/mL S ng/L

 (b) 0.0198 μmol/L S pmol/mL

 (c) 1.74 μg/dL S mg/mL

 (d) 0.49 mmol/L S μmol/dL

PEARSON

Go to www.myhealthprofessionskit.com <http://www.myhealthprofessionskit.com/> to access the Compan-
ion Website created for this textbook. Simply select “Clinical Laboratory Science” from the choice of disciplines. 
Find this book and log in using your username and password to access additional practice problems, answers 
to the practice and contextual problems, additional information, and more.

 
Substance

Molar Mass 
(g/mol)

actual  
Mass (g)

actual  
Moles

sodium chloride (naCl) 58.44 3.50 (a)

sucrose (C12H22o11) 342.3 (b) 0.0004

urea (CH4n2o) 60.06 0.70 (c)

potassium hydrogen  
phosphate (KHPo4)

174.18 (d) 0.062

glucose (C6H12o6) 180.2 5.66 (e)

 4. (LO 8) Convert each of the following Celsius temperatures 
to its Fahrenheit equivalent.

 (a) 37°C  (b) 82°C  (c) 140°C  (d) -20°C  (e) 4°C

www.myhealthprofessionskit.com
http://www.myhealthprofessionskit.com/
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Learning Objectives
At the end of this chapter, the student should be able to do the following:
 1. Explain the nature of solutions and distinguish between the solute and 

solvent
 2. Explain the various expressions of concentration
 3. Calculate and interpret concentrations expressed in any of these four sys-

tems: percentage, molarity, molality, and normality
 4. Use specific gravity in diluting concentrated solutions
 5. Describe the relative convenience of the pH scale
 6. Calculate pH values and interconvert them with molarity
 7. Interconvert expressions of concentration

Key Terms
ppb
ppm
ppt
soluble
solute
solution
solvent
sparingly soluble
specific gravity
(v/v)
(w/v)
(w/w)
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A solution is a homogeneous mixture of two or more substances that do not chemically react with each 
other. Because the distribution of substances is uniform throughout a homogeneous mixture, a solution’s 
composition, appearance, and properties are the same in any one portion as they are in any other portion. 
The substance present in the largest amount is called the solvent, whereas every other component of the 
solution is referred to as a solute. As a mixture forms, the solute is said to dissolve in the solvent. In the 
clinical laboratory, the most common solvent is water, and a solution of anything in water is referred to 
as aqueous.

A solution may consist of a solid and a liquid, a common example being hot tea sweetened with 
sugar. An example from the clinical laboratory is normal saline, which is a well-defined solution of 
sodium chloride in water. The solids in these cases are soluble, meaning they dissolve in water. Insoluble 
solids do not dissolve in water, whereas sparingly soluble solids dissolve only to a small degree.

A solution may be composed of two liquids, common examples of which are (1) rubbing alcohol, 
which is a mixture of isopropyl alcohol and water, and (2) vinegar, which is a mixture of acetic acid and 
water. In such cases, the liquids are miscible with each other, meaning that they are capable of being 
mixed in any ratio without separating. Two immiscible liquids, such as gasoline and water, do not form 
solutions but instead separate on standing, with the less dense liquid rising to the top.

A solution may comprise a gas dissolved in a liquid. Two common examples are (1) sparkling water, 
which is just an aqueous solution of carbon dioxide gas, and (2) household ammonia, which is an aque-
ous solution of ammonia gas.

Depending on the test we are conducting, serum and other body fluids can be regarded as any or all 
of the three kinds of solution outlined above. For example, when we quantify alcohol in blood, the serum 
is a liquid-in-liquid solution. However, we can view it as a solid-in-liquid solution when glucose is the 
analyte of interest or as a gas-in-liquid solution when the partial pressure of oxygen is being determined.

This chapter focuses on the calculation and expression of concentration, which is a measure of how 
much solute and solvent are present in a solution. It is difficult to exaggerate the importance of master-
ing this material because the consequences of reporting an incorrect concentration on a patient sample 
can be grave, as, for example, when it leads to the misdiagnosis of an illness or the administration of an 
inappropriate drug. Nearly every liquid in a clinical laboratory—from reagents to control solutions, from 
serum to spinal fluid, from disinfectants to cleaning agents—has a concentration that we must specify 
correctly and unambiguously.

Quantifying an analyte in a patient sample requires that the concentration of every reagent used in the 
assay be accurate to an acceptable degree. Although some reagents do come ready to use from the manufac-
turer, others must be prepared in the laboratory directly before use. Erroneous concentrations can even have 
repercussions not directly related to patient results. Consider two examples. First, the concentration of an 
unconsumed reagent that has expired may determine whether the solution is poured down the drain or con-
signed to hazardous waste—a decision that affects both the environment and the laboratory’s budget. Second, 
there is the issue of laboratory hygiene. We commonly use bleach as a general disinfectant for surfaces in the 
laboratory. The required concentration, however, depends on the purpose; it may be as high as 10% for surface 
disinfection or as low as 0.5% for decontaminating the tubing in an automated instrument. If the concentra-
tion is too low, the bleach will fail to disinfect thoroughly; if too high, it might damage expensive parts. When 
bleach is an unsuitable disinfectant, alcohol serves as an alternative, most effective when its concentration is 
70%; it is markedly less bactericidal at higher or lower concentrations. Thus, a solution labeled “70%” that was 
improperly prepared will lack the expected disinfecting power, possibly creating a risk to laboratory personnel.

ExprEssing ConCEntration
There are many ways to express concentration, some deriving from convenience and others from tradi-
tion; it can be based on mass, volume, or number of moles.

Percentage
The following are the three common systems for expressing concentration as a mass or volume 
percentage.

 • Weight of solute per volume of solution (w/v). In this system, the value is the number of grams of 
solute in 100 mL of solution. For example, “10% NaCl (w/v)” describes an aqueous solution of 10 grams 
of sodium chloride in every 100 mL of solution. Understand that this is not the same as 10 grams of 
NaCl in 100 mL of water (see “Molality”). Preparation of 10% NaCl entails dissolving 10 g NaCl in a 
small volume of water in a volumetric flask and then adding water until the volume is 100 mL.
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 • Weight of solute per weight of solution (w/w). In this system, the value is the number of grams of 
solute in 100 grams of solution. Thus, 6% KOH (w/w) is a solution of 6 grams of sodium hydroxide in 
100 grams of solution. In simple terms, it is prepared by dissolving 6 g KOH in a small volume of water 
in a suitable vessel resting on a balance and then adding water until the weight of the solution is 100 g.

 • Volume of solute per volume of solution (v/v). Used for liquid solutes, this system gives the num-
ber of milliliters of solute in 100 mL of solution. Therefore, 70% ethanol (v/v) is a solution of 70 mL 
of ethanol in 100 mL of solution, prepared by transferring 70 mL of ethanol into a volumetric flask 
and then adding water until the volume is 100 mL. Because we can weigh liquids, of course, we may 
also express the concentration of a liquid-in-liquid solution in the other two systems (w/v, w/w).

At this point, it should be clear that expressing concentration just as a percentage (e.g., 
“10% C6H12O6” ) is inadequate because it does not give the basis for the ratio. Therefore, it is necessary 
to specify the system in a suffix: “10% C6H12O6 (w/w).”

Parts-Per Notation
For very dilute solutions, when the value of the percentage is inconveniently small, we can express the 
concentration as “parts per million” (ppm), “parts per billion” (ppb), or “parts per trillion” (ppt). Strictly 
speaking, “1 ppm” means “one part in one million parts,” such as 1 gram of solute in 1,000,000 grams of 
solution. Because the units in the numerator and denominator are the same, they cancel each other and 
the value turns out dimensionless. Thus, this system is similar to that of expressing concentrations as 
weight-per-weight percentages, or “% (w/w).” Consider this example:

 10 ppm = 10 g solute/1,000,000 g solution

 = 0.001 g solute/100 g solution

 = 0.001% (w/w)

For aqueous solutions, however, parts-per notation is sometimes used as an alternative to weight-
per-volume (w/v) percentages, even though this practice can cause confusion by mixing units. Because 
the scientific community knows that 1000 grams of water has a volume of 1 liter, and because a very 
dilute aqueous solution has the same mass as an equal volume of water, exchanging mass for volume in 
the parts-per expression does not appreciably change the information it gives us. For example,

 6 ppm = 6 g of solute/1,000,000 g of solution

 = 0.006 g of solute/1000 g of solution

 = 0.006 g of solute/ liter of solution

Therefore, we can use “ppm” to mean 1 mg of solute in 1 L of very dilute solution:

 1 ppm = 1 g/1,000,000 mL

 = 0.001 g/1000 mL

 = 1 mg/L

Expressing this concentration as “1 ppm” is clearly easier than writing it out as a percentage, “0.0001% (w/v)”:

 1 ppm = 0.001 g/1000 mL

 = 0.0001 g/100 mL

 = 0.0001% (w/v)

CheCkpoint 5-1

 1. What is the % (w/v) of a solution that comprises 8.2 g of naoh per 100 ml?

 2. how many grams of KCl are present in 200 ml of 10% KCl (w/v)?

1. 8.2%
2. each 100 ml contains 10 g of KCl. thus, 200 ml contains 20 g.
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Molality
Molality denotes the amount of solute in solution per kilogram of solvent—not per kilogram of solution. 
The symbol is “m,” pronounced “molal.” For example, dissolving 1 mole of molecules in 2 kilograms of 
solvent constitutes a 0.5 m solution.

molality =
moles of solute

kilograms of solvent

Unlike molarity, molality is not a function of volume, and its value, therefore, does not depend on 
temperature. Thus, a cold solution has the same molality as it does when warm.

Normality
Normality, symbolized by “N,” is similar to molarity except that it expresses concentration in terms of 
equivalent weight rather than formula mass. The equivalent weight of a substance is the amount that 
contains, theoretically combines with, or theoretically replaces 1 mole of hydrogen ions (H+).

Molarity
Whereas percentage expresses concentration in terms of a measurable quantity (weight or volume), 
molarity does not. Rather, molarity refers to something that we can neither measure nor count: the 
molecules, ions, or atoms of a substance.

Molarity is the number of moles of a substance in 1 liter of solution (Equation 1). Thus, if 1 mole 
of glucose is dissolved in water and the volume is brought to 1 liter, the resulting solution is said to be  
“1 molar in glucose,” and its concentration is written as “1 m.”  Often, we write the molarity of a substance 
as the name or chemical symbol in brackets: [glucose] or [Na+].

molarity =
moles of solute
liters of solution

Preparing a solution with its concentration expressed as molarity requires the ability to interconvert 
grams and moles. Remember that 1 mole equals 6.023 * 1023 particles, in the same way that a dozen is 
equal to 12 particles and a gross equals 144 particles. Remember also that the formula mass (or formula 
weight) is the sum of the masses of all the atoms and/or ions in a formula unit, and that the mass of  
1 mole of a substance is its molar mass.

A 1.0 m solution of glucose (C6H12O6), then, comprises 1.0 mole of glucose, or 180 grams, in a 
volume of 1.0 liter. Of course, the solution should be at room temperature and at atmospheric pressure, 
or its concentration may not be exactly 1 m.

There are variations on the molarity theme intended to simplify the expression of low concentrations. 
For example, if the concentration is 0.001 m, there is 1 millimole in every liter of solution. A simpler repre-
sentation of this solution is “1 mm,” or “1 millimolar.” Likewise, if the concentration is 0.000001 m, there is 
1 micromole per liter of solution; this is more easily expressed as “1μm,” or “1 micromolar.” Another unit 
commonly used in the laboratory, especially in research, is “nm,” or “nanomolar.”

Because molarity is a function of volume, its value changes with temperature. Therefore, a cold 
solution may have a different molarity than it does when warm.

equation 1

 equation 2

CheCkpoint 5-2

 1. What is the molarity of a solution comprising 2 moles of sucrose (table sugar) in 4 liters?

 2. how many moles of sucrose are in 0.500 l of the above solution?

1. 0.50 m. the ratio is 2 mol per 4 l:

2 mol
4 L

= 0.50 mol/L = 0.50 m

2.  0.25 mol. the quantity 0.500 l is, of course, half a liter, and a liter contains 0.5 
moles:

0.500 L *
0.50 mol

L
= 0.25 mol
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Preparing for Possible Changes
At this writing, the National Institute of Standards and Technology (NIST) considers obsolete the pre-
viously discussed three concentration terms “molarity,” “molality,” and “normality,” along with their 
symbols, “m,” “m,” and “N,” respectively. Nevertheless, the term “molarity” and its symbol remain very 
common in chemistry and probably will be so for a long time to come. The terms “molality” and “nor-
mality,” despite being used less often than “molarity,” are still common enough that it is necessary to 
understand them. Table 5-1 H summarizes the changes proposed by NIST.

spECifiC gravity
Specific gravity is the ratio of the density of a solution to the density of water at 4°C (1 g/mL). A substance 
with a value greater than 1 is denser than water, and a substance with a value smaller than 1 is less dense. 
And, because specific gravity is a ratio of two densities, the units cancel each other, leaving only a magnitude.

Specific gravity is helpful in diluting concentrated commercial acids in the laboratory. Measuring 
the weight of a liquid is awkward and, when that liquid is a concentrated acid, dangerous. Measuring its 
volume, however, is markedly easier, although precautions are still necessary.

Consider, for example, a 1 N (pronounced “one-normal”) HCl solution. By definition, this solution 
comprises 1 equivalent weight of HCl, or 36.5 g, in a volume of 1 L. The amount of HCl that contains 
1 mole of hydrogen ions is, of course, 1 mole; the molar mass of HCl is 36.5 g, which is, therefore, the 
equivalent weight. Thus, for HCl the normality and molarity are equal.

By contrast, consider a 1 N H2SO4 solution. Although this solution, like 1 N HCl, comprises 1 equiv-
alent weight of H2SO4 in 1 L, only one-half a mole of H2SO4 contains 1 mole of hydrogen ions. Because 
the molar mass of H2SO4 is 98.1 g, the equivalent weight is half that value, or 49.0 g. Thus, for H2SO4, a 
1 N solution is the same as a 0.5 m solution.

For an acid, then, an equivalent is one hydrogen ion in the formula. Thus, 1 mole of HCl is 1 equiva-
lent, whereas 1 mole of H2SO4 is 2 equivalents and 1 mole of H3PO4 is 3 equivalents.

For a base or a salt, an equivalent is the number of hydrogen ions with which it can theoretically 
combine; however, we can just as easily regard it as 1 mole of ionic charges. For example, because the 
bicarbonate ion (HCO3

 -) carries a single charge and can combine with 1 hydrogen ion, then obviously 
1 mole of bicarbonate ions carries 1 mole of charges and can combine with 1 mole of hydrogen ions. 
Therefore, 1 equivalent of HCO3

 - ions is 1 mole.
The magnesium ion (Mg2+), by contrast, carries two charges and can theoretically replace two 

hydrogen ions. Thus, 1 mole of Mg2+ ions is the same as 2 equivalents.
In general, then, the number of equivalents is the product of the number of moles and the number 

of charges:

equivalents = moles * charges

In fact, we can express concentration in terms of equivalents (“Eq”), a system widely used in  medicine 
because it directly reports the concentration of positive or negative charges. For example, the concentra-
tion of potassium ion in serum typically can be about 5 mEq/L, which is the same as 5 mmol/L (or 5 mm).  
However, calcium ion (Ca2+) can also typically be present in serum at about 5 mEq/L, which is not  
5 mmol/L, but half of that, or 2.5 mmol/L. Clearly, a mole of potassium ions gives the same concentra-
tion of positive charges as does half a mole of calcium ions, but expressing that concentration in terms of 
equivalents makes it necessary to convert from moles to charges.

CheCkpoint 5-3

 1. What is the normality of a solution consisting of 2 mol naCl in 1 liter?

 2. A 2 N H2So4 solution has how many grams of H2So4?

1. 2 N. one mole of naCl is 1 equivalent.
2.  An equivalent weight for sulfuric acid is half a mole, 49 g. Therefore, 2 equivalent 

weights is 98 g, the molar mass.

 equation 3
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Suppose, for example, that you have a bottle of concentrated aqueous HCl, the label of which states 
the specific gravity to be 1.18 and the purity 36%. What these two values mean is that 1 mL of the liquid 
in the bottle weighs 1.18 g and that 36% of this weight is HCl (the rest is water). If your task is to dilute this 
acid to a concentration of 1 N in a final volume of 100 mL, then the final solution must have 1 equivalent 
weight of HCl in every liter.

To do this, you must first determine the equivalent weight of HCl in 100 mL of the dilute acid. 
Because HCl contains one hydrogen ion, the equivalent weight is the formula mass, or 36.5 g. Therefore,

100 mL ¢ 1 L
1000 mL

≤ ¢36.5 g

1 L
≤ = 3.65 g

What this means is that the diluted acid has 3.65 g of HCl in a final volume of 100 mL. Next, you 
must calculate the volume of concentrated aqueous HCl that contains 3.65 g—the volume that you will 
subsequently dilute to that final volume of 100 mL. You know that 36% of the weight of the concentrated 
aqueous acid is HCl; therefore,

0.36 * ¢1.18 g

1 mL
≤ = 0.425 g/mL

This means that every mL of the liquid contains 0.425 g of HCl. Now you can calculate the volume 
needed for dilution to 100 mL:

3.65 g HCl * ¢ 1 mL
0.425 g HCl

≤ = 8.6 mL

Thus, you pipet 8.6 mL (slowly and under a hood) of the concentrated aqueous HCl into water and 
then add enough water to bring the final volume to 100 mL. The result is a solution of 1 N HCl.

thE ph sCalE
The concentration of hydrogen ions profoundly affects many chemical reactions in the laboratory and 
nearly all physiological processes in the human body. Understanding the expression of hydrogen-ion 
concentrations, therefore, is critical both to the physician, who makes medical decisions, and to the 
laboratorian, who generates the test results that help guide those decisions.

Serum, urine, other biological fluids, and common laboratory solutions have H+ concentrations 
that are ponderous to express in the units discussed previously. For example, the concentration of 
H+ in the blood is 0.00000004 m (4 * 10-8 m). To simplify such inconvenient numbers, Danish bio-
chemist Søren Sørenson proposed the quantity “pH” in 1909. He defined the term pH as the puissance 
d’hydrogène, which translates as the power of hydrogen, expressing [H+] as a negative logarithm of 10. In 
other words, [H+] = 10-pH.

Rearranging this equation gives

pH = - log[H+]

obsolete Quantity 
and symbol proposed term proposed symbol proposed Units

Molarity (m) Amount-of-substance concentration of B cB mol/dm3

mol/l

kmol/m3

Molality (m) Molality of solute B bB mol/kg

normality (N) Amount-of-substance concentration of 
HnA

c [(1/n)HnA]* mol/dm3

mol/l

kmol/m3

*In this notation, n represents the number of hydrogen ions an acid can release. For example, if the acid is 
sulfuric (H2So4), then rather than writing “a 0.5 N solution of sulfuric acid,” we would write “a solution of 
sulfuric acid with an amount-of-substance concentration of c [(1/2) H2So4] of 0.5 mol/l.”

H tablE 5-1  Concentration Terms That NIST Considers Obsolete,  
and Their Proposed Replacements

 equation 4
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The pH of blood, then, is
pH = - log(4 * 10-8 m)

pH = 7.4

Clearly, “7.4” is much simpler than “0.00000004” or “4 * 10-8.”  Now, let us look at the pH scale 
(Table 5-2 H) that emerges from Equation 4.

This scale has at least four salient features:

 1. As pH increases, the concentration of H+ decreases. Thus, their relationship is inverse.
 2. A difference of 1 pH unit—for example, 8 to 9 or 5 to 4—represents a 10-fold change in the H+ con-

centration. This is so because the scale is logarithmic and its base is 10. Thus, with respect to H+, a 
solution at pH 6 is 100 times more concentrated than it is at pH 8.

 3. The concentration of H+ is in “mol/L.” The pH convention is valid only for this unit of concentration.
 4. By virtue of being a logarithm, the pH is dimensionless; that is, it has no units. Thus, we say “the pH 

is 7,” not “the pH is 7 moles per liter.”

A solution at pH 7 is “neutral.” At pH 6 7, it is acidic, and at pH 7 7, it is alkaline, or basic. 
(Strictly speaking, this is true only at 25°C. At other temperatures, these guidelines vary somewhat.)

Although a whole pH unit corresponds to a factor of 10, every decrement of 0.30 pH units reflects 
a doubling of the H+ concentration, and every increment reflects a halving of the H+ concentration. 
This knowledge is helpful in a quick comparison of two pH values. If the H+ concentration doubles, the 
pH goes down by 0.30, and if the H+ concentration halves, the pH goes up by 0.30. For example, if the 
pH decreases from 4.50 to 4.20, the H+ concentration has risen by a factor of   ∼2  from 3.16 * 10-5 m 
to 6.31 * 10-5 m. Likewise, if the pH increases from 7.10 to 7.40, the H+ concentration has fallen by a 
factor of   ∼2  from 7.94 * 10-8 m to 3.98 * 10-8 m.

This relationship comes about because the logarithm of 2 is 0.30. Consider what happens when the 
H+ concentration doubles:

 pH = - log([H+] * 2)

 pH = - log[H+] - log 2

 = - log[H+] - 0.30

What the last equation in this sequence says is that when [H+] doubles, the original pH goes down by 0.30.
When the H+ concentration halves, the original pH goes up by 0.30:

[H+ ] (mol/l) pH

0.1 10-1  1

acidic

neutral

alkaline

0.01 10-2  2

0.001 10-3  3

0.0001 10-4  4

0.00001 10-5  5

0.000001 10-6  6

0.0000001 10-7  7

0.00000001 10-8  8

0.000000001 10-9  9

0.0000000001 10-10 10

0.00000000001 10-11 11

0.000000000001 10-12 12

0.0000000000001 10-13 13

0.00000000000001 10-14 14

H tablE 5-2 The pH Scale
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ConvErting bEtwEEn Units
We can convert between two sets of units in any of several ways. Let us consider three such ways, using 
the example of converting a result for serum glucose of 80 mg/dL to “mm” (“mmol/L”).

 pH = - log([H+] * 1�2)

 pH = - log[H+] - log1�2

 = - log[H+] + 0.30

CheCkpoint 5-4

 1. What is the pH of a solution in which [H+] is 0.062 m?

 2. What is [H+] of a solution whose ph is 8.5?

1. pH = - log(0.062 m) = 1.21
2. 10-pH = [H+] = 10-8.5 = 3 * 10-9 m

Notice that there is only one significant figure in the final result because the measured quantity with the 
fewest in the computation, “80 mg/dL,” has only one.

approaCh 1

Dimensional analysis, introduced in Chapter 4, is the most efficient approach. Setting up 
the factors correctly is the key to a successful calculation; this comes about by choosing 
numerators and denominators such that cancellations occur and the target units emerge 
at the end:¢80 mg

dL
≤ ¢ g

1000 mg
≤ ¢ mol

180 g
≤ ¢1000 mmol

mol
≤ ¢10 dL

L
≤ = 4 mmol/L = 4 mm

Target units

Starting conc.

By this point, starting conc.  
has been converted into 

“g/dL” (0.08 g/dL)

Starting conc. is 
now in “mol/dL” 

(4.4 * 10-4 mol/dL)

Starting conc. is now 
in “mmol/dL”  

(0.44 mmol/dL)

approaCh 2

An alternate approach to solving the above problem is the ratio method, also introduced 
in Chapter 4. Using this method, our first objective is to convert “80 mg” into “mmol,” 
which requires taking it to “grams,” then to “moles,” and finally to “millimoles.” In the 
first step, we set up equivalent ratios:

1000 mg

1 g
=

80 mg

x

Cross-multiplication gives

(1000 mg)(x) = (80 mg)(1 g)

x = 0.08 g

(continued)
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In the next step, we convert “0.08 g” into “moles” (the molar mass of glucose is  
180 g/mol):

180 g

1 mol
=

0.08 g

x

x = 0.0004 mol

Finally, we convert “0.0004 mol” into “millimoles”:

1 mol
1000 mmol

=
0.0004 mol

x

x = 0.4 mmol

thus, this solution contains 0.4 mmol of glucose in each dl. to complete the conversion, 
we change “dl” into “liters”:

10 dL
1 L

=
1 dL

x

x = 0.1 L

the solution, therefore, has 0.4 mmol of glucose in 0.1 l, giving a concentration of 
4 mmol/l:

0.4 mmol
0.1 L

= 4 mmol/L = 4 mm

As in the first approach above, notice that there is only one significant figure in the final 
result because the measured quantity with the fewest in the computation, “80 mg/dl,” 
has only one.

approaCh 3

Another way to solve the above problem is to recognize simple mathematical relation-
ships and exploit them to speed up the computation. In the problem under consideration, 
we recognize “80 mg” as being 8% of 1000 mg, which is the same as 8% of 1 g. That 
amounts to 0.08 g.

next, because the formula mass of glucose is 180 g/mol, we can quickly calculate 
that 0.08 g of glucose is 0.04% of 1 mol:

0.08 g

180 g
* 100% = 0.04%

And 0.04% of 1 mol is 0.0004 mol. Thus, at this point in the computation, we know that 
1 dl of our glucose solution contains 0.0004 mol.

We recognize that 1 mol of anything—glucose molecules, golf balls, or votes—is the 
same as 1000 mmol. In other words, there are 1000 mmol per mol. Therefore, no matter 
the number of moles, we merely multiply it by 1000 mmol/mol to convert the units to 
“millimoles”; the number of millimoles is always 1000 times greater than the number of 
moles. In this case, we have 0.0004 mol:

0.0004 mol * 1000 mmol/mol = 0.4 mmol

now we know that our glucose solution has 0.4 mmol per dl. all that remains at this 
point is to convert “dl” to “l.” We also know that 1 liter of any liquid—glucose solu-
tion, gasoline, or tea—occupies the same volume as 10 deciliters. In other words, there 
are 10 dl per l. therefore, no matter the number of deciliters, we merely divide it by  
10 dl/l to convert the units to “liters”; the number of liters is always 1/10 the number of 
deciliters. in this case, we have 1 dl:

1 dL , 10 dL/L = 0.1 L
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at the end of our computation, we see that there are 0.4 mmol of glucose in 0.1 l of our 
solution. Therefore, the concentration is

0.4 mmol
0.1 L

= 4 mmol/L = 4 mm

As in the first and second approaches above, notice that there is only one significant fig-
ure in the final result because the measured quantity with the fewest in the computation, 
“80 mg/dl,” has only one.

CheCkpoint 5-5

 1. For a glucose solution, convert “2.3 mg/ml” to “mol/l” (honor figure significance).

  Approach 1¢2.3 mg

mL
≤ ¢ g

1000 mg
≤ ¢ mol

180 g
≤ ¢1000 mL

L
≤ = 0.013 mol/L

  Approach 2

1000 mg

1 g
=

2.3 mg

x
  x = 0.0023 g

180 g

1 mol
=

0.0023 g

y
     y = 1.27 * 10-5 mol

1000 mL
1 L

=
1 mL

z
      z = 0.001 L

1.27 * 10-5 mol
0.001 L

= 0.013 mol/L

 2. For a Koh solution, convert “5 μmol/ml” to “mg/l” (honor figure significance).

  Approach 1¢5.0 μmol
mL

≤ ¢ mol
106 μmol

≤ ¢56.1 g

mol
≤ ¢1000 mg

g
≤ ¢1000 ml

L
≤ = 280 mg/L

  Approach 2

1 * 106 μmol
1 mol

=
5.0 μmol

w
  w = 5.0 * 10-6 mol

1 mol
56.1 g

=
5.0 * 10-6 mol

x
      x = 0.00028 g = 2.8 * 10-4 g

1 g

1000 mg
=

2.8 * 10-4 g

y
    y = 0.28 mg

1000 mL
1 L

=
1 mL

z
        z = 0.001 L

0.28 mg

0.001 L
= 280 mg/L
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Summary
 7. For an acid, an equivalent is one hydrogen ion in the for-

mula.  For a base or a salt, an equivalent is the number 
of hydrogen ions with which it can theoretically combine; 
however, it can just as easily be regarded as 1 mole of ionic 
charges.

 8. Specific gravity is the ratio of the density of a solution to 
the density of water at 4°C (1 g/ml).

 9. The pH system for expressing concentration simplifies the 
numbers involved. The pH value is the negative logarithm 
of the H+ concentration:

pH = - log[H+]

 10. The pH scale has four important properties: (a) the relation-
ship between pH and [H+] is inverse, (b) a difference of 1 pH 
unit represents a 10-fold difference in [H+], (c) the pH is valid 
only for molarity, and (d) the pH value is dimensionless.

 11. A pH difference of 0.30 reflects a two-fold difference in 
[H+].

 1. A solution is a homogeneous mixture of substances. The 
solvent is the substance present in largest amount, whereas 
every other substance is a solute.

 2. The concentration of a solution is a measure of the amounts 
of solute and solvent in the mixture.

 3. The expression of concentration by percentage has three 
commonly used systems: (a) weight per volume (w/v), which 
gives the number of grams of solute in 100 ml of the solu-
tion; (b) weight per weight (w/w), which gives the number 
of grams of solute in 100 g of the solution; and (c) volume 
per volume (v/v), which gives the number of milliliters of 
solute in 100 ml of the solution.

 4. Molarity expresses concentration as the number of moles 
of solute in 1 liter of solution. Its symbol is “m.”

 5. Molality expresses concentration as the number of moles 
of solute per kg of solvent. Its symbol is historically “m.”

 6. Normality expresses concentration as the number of equiv-
alent weights in 1 liter of the solution. An equivalent weight 
is the amount of a substance that contains, theoretically 
combines with, or theoretically replaces 1 mole of hydro-
gen ions (H+).

Practice Problems
 1. (LO 3) Calculate % (w/v) for each of the following solutions.

 (a) 400 g Koh in 1 l

 (b) 60 g KCl in 500 ml

 (c) 1.8 g naCl in 200 ml

 (d) 0.5 g glucose in 1 dl

 (e) 250 mg Pb(no3) in 300 ml

 (f) 3.08 g naoCl in 50 ml

 2. (LO 3) Calculate % (w/w) for each of the following solutions.

 (a) 9.2 g CaCl2 dissolved in 800 g of water

 (b) 500 mg cholesterol dissolved in 5 g of ethyl acetate

 (c) 200 mg na2Co3 dissolved in 25 g of water

 3. (LO 3) If isopropyl alcohol is added to 50 mL of water until 
the volume of the solution is 150 mL, what is the % (v/v)?

 4. (LO 3) Calculate the molarity of each of the following 
solutions.

 (a) 4 g Koh in 1 l of solution

 (b) 60 g naCl in 400 ml of solution

 (c) 0.18 mmol Fe2+ in 200 ml of solution

 (d) 0.70 μmol HCl in 50 μl of solution

 (e) 164 mg Ca(no3)2 in 10 ml of solution

 (f) 0.130 mg Co(no3)2 in 300 μl of solution

 5. (LO 3) Calculate the normality of each of the following 
solutions.

 (a) 14.9 g KCl in 200 ml of solution

 (b) 320 g naoh in 2 l of solution

 (c) 24.53 g H2So4 in 250 ml of solution

 6. (LO 3, 7) Complete the following table for MgCl2.

Molarity % (w/v)

1.0

2.6

3.4 * 10-4

29.1

0.0025
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Molarity % (w/v)

2.0

   0.90

1.7 * 10-3

16.0

0.082

 7. (LO 3, 7) Complete the following table for NaCl.

Molarity % (w/v)

0.80

5.0

9.6 * 10-4

0.83

0.066

 4. (LO 6, 7) Complete the following table. Note the units 
requested.

Contextual Problems
 1. (LO 2, 3, 7) If the reference range for serum Ca2+ is 8.5–

10.5 mg/dL, would a result of 2.3 mmol/L be within that 
range? A result of 4.8 mEq/L?

 2. (LO 2, 3, 7) If the reference range for serum Mg2+ is 1.8–3.0 
mg/dL, would a result of 2.6 mEq/L be within that range? 
A result of 0.8 mmol/L?

 3. (LO 6) Complete the following table.

 6. (LO 2, 3, 7) Your laboratory analyzes samples that are part 
of the proficiency testing program being conducted by an 
oversight agency. For eight of the analytes, the agency 
requests units that happen to differ from those that your 
laboratory uses. Convert your results appropriately in the 
following table.

ph [h+] (m)

 3.90

1.9 * 10-6

 7.05

2.29 * 10-10

11.38

8.71 * 10-14

ph [h+] (mm)

 2.61

0.0200

 7.00

7.10 * 10-8

12.27

1.00 * 10-11

 5. (LO 3) Consider a 2.00 m glucose solution. In 2720 g of this 
solution, what is the total mass of the glucose?

 8. (LO 3, 7) Complete the following table for glucose 
(C6H12o6).

analyte your result
result in 

requested Units

creatinine  
(112.3 g/mol)

6.4 mg/L μm

folic acid  
(441.6 g/mol)

14 ng/mL nmol/L

phenobarbital 
(230.8 g/mol)

15 μg/ml μm

lead 4.2 μm μg/l

phosphorus 1.62 mm mg/L

iron 22.9 μmol/l μg/l

glucose 160 mg/dL mmol/L

uric acid  
(168.1 g/mol)

77 mg/L μm

 7. (LO 2, 3, 7) Your laboratory’s method for quantifying a par-
ticular drug in whole blood requires regular decontamina-
tion by running through the instrument a solution of bleach 
(sodium hypochlorite, NaOCl) at a concentration between 
0.6% and 1% (w/v). A lower concentration fails to decon-
taminate the apparatus, and a higher concentration dam-
ages it. You have a NaOCl solution at 0.083 m. Does this 
concentration fall within the range specified?
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  From the emergency room, you receive a serum sample 
for a suspected case of ethylene glycol poisoning. Your 
test for ethylene glycol in the sample returns a result of 
9.2 mmol/L. Does this concentration make the patient a 
candidate for hemodialysis?

 10. (LO 4) One of the assays your laboratory routinely carries 
out requires 1 N H2So4. You have in stock a bottle of con-
centrated sulfuric acid with a specific gravity of 1.84 and a 
purity of 97%. To achieve the target concentration of 1 N, 
how many milliliters of this acid must be diluted to a final 
volume of 100 mL?

 8. (LO 2, 3, 7) You work in a private laboratory that is about to 
implement a new method for quantifying ionized calcium 
in serum. Your supervisor explains that the new method 
gives results in units of “mg/dL,” whereas the physicians 
in the clinics want results in units of “mmol/L.” Therefore, 
your supervisor instructs you to routinely multiply the first 
result by 0.2495 to get the second result, which you may 
then release to the physician. Is your supervisor correct?

 9. (LO 2, 3, 7) Ethylene glycol is a toxic substance used in 
such products as brake fluid, inks, synthetic waxes, and 
antifreeze. In cases of accidental ingestion, the physicians 
in your hospital treat the patient with hemodialysis when 
the ethylene glycol concentration in the serum is greater 
than 50 mg/dL (molar mass = 62 g/mol).

Go to www.myhealthprofessionskit.com <http://www.myhealthprofessionskit.com/> to access the Compan-
ion Website created for this textbook. Simply select “Clinical Laboratory Science” from the choice of disciplines. 
Find this book and log in using your username and password to access additional practice problems, answers 
to the practice and contextual problems, additional information, and more.

PEARSON

www.myhealthprofessionskit.com
http://www.myhealthprofessionskit.com/


6 Dilutions

Learning Objectives
At the end of this chapter, the student should be able to do the following:
 1. Explain the nature, purpose, and strategy of dilution, as well as the general 

procedure for executing it
 2. Use the dilution ratio, factor, and equation; plan a dilution for a target 

volume or concentration; and correct a raw test result on a diluted sample
 3. Distinguish between simple and serial dilution and know when to use one 

over the other
 4. Calculate and use the tube and sample dilutions in planning or interpreting 

a serial procedure

Key Terms

Chapter Outline
Key Terms  93

Simple Dilutions  93

Serial Dilutions  96

antibody titer
diluent
dilution factor
dilution ratio

sample dilution
serial dilution
tube dilution

In the clinical laboratory, we often need to carry out dilutions. In clinical chemistry, we 
most often make dilutions when the concentration of a given analyte is higher than the 
upper limit of the method we are using and when we prepare solutions for constructing 
a standard curve. The quality of test results, and therefore the quality of patient care, 
depends on how well the technologist pipets the solutions and carries out the calcula-
tions. In microbiology, we make dilutions in order to prepare liquid cultures for plating 
on agar, whereas in serology, we need dilutions to determine antibody titers.

Simple DilutionS
To begin, consider the following scenario from a clinical laboratory. A physician sus-
pects that a patient in the emergency department took an accidental overdose of car-
bamazepine, a drug used to prevent epileptic seizures. Life-threatening toxic effects 
sometimes occur when the plasma concentration of this drug exceeds 15 μg/mL. A 
technologist in the laboratory runs the test for carbamazepine on a blood sample from 
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this patient, using a method that is reliable for drug concentrations from 2 to 20 μg/mL. The result for 
this sample, however, is 22 μg/mL,  an unreliably high value. Therefore, the technologist must lower the 
carbamazepine concentration into the acceptable range (2920 μg/mL)  by diluting the sample, running 
the test again, and then correcting the result for the dilution.

For example, if she1 mixes 100 μL  of the undiluted sample with 100 μL  of saline solution (the dilu-
ent), the total final volume is now 200 μL  (Figure 6-1 n). The drug is present in twice as much volume as 
it was before dilution, and its concentration is now one-half of its real value. In other words, the ratio of 
the initial volume (100 μL)  to the final volume (200 μL)  is 1:2, the same as the ratio of the final concentra-
tion to the initial concentration. Therefore, the dilution ratio is 1:2, and the resulting solution is a “1:2 
dilution” (pronounced “1-to-2”):

dilution ratio =
Vinitial

Vfinal
=

C final

Cinitial

where V is volume and C is concentration. The technologist could have prepared a 1:2 dilution from 
any initial volume, provided the final volume satisfied Equation 1. For example, she might have diluted 
234 μL  of the patient sample to 468 μL  with saline solution, or 1.3 mL of the sample to 2.6 mL.

The technologist then runs the same analytical test on the 1:2 dilution of the original sample. The 
result is 12 μg/mL  (Figure 6-1), a value that is clearly reliable because it falls between 2 and 20. Never-
theless, she must correct this result for the fact that the test was carried out on a 1:2 dilution, in which 
the drug’s concentration is only one-half of its real value. Thus, she multiplies the result by 2, giving a 
final carbamazepine concentration of 24 μg/mL,  which she then reports to the physician. The value of 
2 by which the technologist multiplied the result of 12—the dilution factor—is simply the reciprocal 
of the dilution ratio.

However, she might well have chosen to mix 100 μL  of the original sample with some other vol-
ume of saline solution, say, 300 μL,  in which case the total volume would be 400 μL  and the resulting 
dilution would be 1:4. The drug would then be present in four times as much volume as it was before 
dilution, which decreases its concentration to one-fourth of the real value. Substitution of these volumes 
into Equation 1 confirms this. The result of the test on a 1:4 dilution of the original sample would be 6, 
which, when multiplied by the dilution factor of 4, gives 24 μg/mL.  This is the same final carbamazepine 
concentration as the 1:2 dilution yields.

1Because English does not have a gender-neutral singular pronoun, this book alternates genders between scenarios.

n Figure 6-1 A simple dilution.

+ 100 �L of 
diluent

FINAL
VOLUME

Total Volume (�L) irrelevant 100 200

Dilution Ratio � � 1:2

Dilution Factor � � 2

Concentration (�g/mL) 24 24 12

INITIAL
VOLUME

Transfer 

100 �L

ORIGINAL
SAMPLE

Equation 1
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For this patient, the consequences of a calculation mistake, of a pipetting error, or of simply 
forgetting to correct for the dilution, could be serious—even fatal. This is true for other analytes 
as well, underscoring the importance of making dilutions accurately and carrying out calculations 
correctly.

For the 1:2 dilution, the volume of sample before dilution (its “initial volume”) was 100 μL,  and 
the volume after dilution (its “final volume”) was 200 μL.  Furthermore, the carbamazepine concentra-
tion after dilution (“final concentration”) was determined to be 12 μg/mL.  The concentration before 
dilution (“initial concentration”) was the target value—the result that the technologist calculated and 
reported to the physician: 24 μg/mL.  Thus, the process of dilution increased the volume and decreased 
the concentration by the same factor of 2. This means, in turn, that the ratio of the final volume to the 
initial volume equals the ratio of the initial concentration to the final concentration:

Vfinal

Vinitial
=

200 μL
100 μL

=
Cinitial

C final
=

24 μg/mL

12 μg/mL
= 2 

It is clear from this equation that, if three of the variables are known, we can calculate the fourth. In 
this example, the technologist knew Vfinal, Vinitial,  and Cfinal,  and from these three values she calculated 
Cinitial,  which corresponds to the undiluted sample. Simple algebraic rearrangement of Equation 2 iso-
lates the target variable:

VfinalC final

Vinitial
= Cinitial

Substitution into Equation 3 gives

(200 μL)(12 μg/mL)

100 μL
= 24 μg/mL

We can apply Equation 3 to the 1:4 dilution on the same patient sample, giving the same result:

(400 μL)(6 μg/mL)

100 μL
= 24 μg/mL

The general mathematical expression of this relationship becomes a useful tool in the laboratory:
VfinalC final = VinitialCinitial

For example, consider the use of Equation 4 in the following scenario. Your laboratory uses an 
analytical instrument for lead (Pb) that requires calibration with four standard solutions of lead at 5, 
10, 20, and 50 μg/mL  in 5% HNO3.  The manufacturer supplies a stock lead solution of 1000 μg/mL,  
which must be diluted to those four concentrations.

A technologist in your laboratory prepares the standard solutions by using Equation 4. His task is to 
determine the volume of stock solution to be diluted to a certain final volume with the diluent (5% HNO3 ) 
in order to achieve the target concentrations. He decides to set the final volume of each standard solution 
at 50 mL because it is convenient to prepare and because it will provide enough solution to last many 
weeks. Next, he arranges Equation 4 to isolate the target variable, Vinitial,  which represents the volume 
of stock solution that must be diluted:

VfinalC final

Cinitial
= Vinitial

Thus, for the standard solution of 50 μg/mL,

(50 mL)(50 μg/mL)

1000 μg/mL
= 2.5 mL

The technologist, therefore, will dilute 2.5 mL of the stock solution of lead to a final volume of 
50 mL, using 5% HNO3  as the diluent. The result is 50 mL of a lead solution at a concentration of 
50 μg/mL;  he can likewise use Equation 5 for each of the other three standard solutions.

Equation 2

Equation 3

Equation 4

Equation 5
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Serial DilutionS
The two preceding scenarios, one involving an out-of-range test result and the other a set of standard 
solutions, show the two most common reasons for carrying out dilutions in the clinical laboratory, as 
the first paragraph of this chapter states. However, some special cases require dilution in several steps, 
rather than the single step used above.

Consider, for example, the case in which a procedure calls for a 1:8000 dilution. Performing such a 
large dilution in one step is impractical to the extent that it requires a vessel big enough to hold the large 
final volume and because a vessel containing 8 L of an aqueous solution weighs about 20 pounds. Also, if 
the vessel is glass, the combination of weight and breakability creates unnecessary risk for the technologist.

To avoid this problem, perform serial dilutions, a series of small dilutions that ultimately gives the 
same target ratio of 1:8000. Figure 6-2 n depicts the procedure. In this example, first perform a 1:20 dilu-
tion of the original sample, which in this case is at 200 mm; transfer 1 mL of this sample into another tube 

n Figure 6-2 A serial dilution.

1 mL
1 mL 1 mL

19 mL 19 mL 19 mL

ORIGINAL
SAMPLE

A B C

Volume Transferred from
     Preceding Tube (mL)

� 1 1 1

Volume of Diluent
     Added (mL)

� 19 19 19

Dilution Relative to
     Preceding Tube
     (“Tube Dilution”)

� 1:20 1:20 1:20

Dilution Relative to
     Original Sample
     (“Sample Dilution”)

� 1:20 1:400 1:8,000

Dilution Factor Relative
     to Original Sample

1 201 202 203

Concentration (mM) 200 10 0.50 0.025

ChECkpoint 6-1

 1. if we dilute 10 μl of a sample up to 160 μl, what is the dilution ratio? What is the 
dilution factor?

 2. A sample at 200 mm is diluted 1:6. What is the final concentration?

 3. We mix 50 μl of a sample with 200 μl of diluent. if the concentration after dilution is 
60 mg/dl, what was it before dilution?

1. Dilution ratio = Vinitial/Vfinal = 1:16. Dilution factor = (dilution ratio)-1 = 16

2. C final = Cinitial * (Vinitial/Vfinal) = 200 mm * (1/6) = 33.3 mm

3. Cinitial = C final * (Vfinal/Vinitial) = 60 mg/dl * (250 μl/50 μl) = 300 mg/dl
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(“A”) and dilute it to 20 mL. The resulting concentration is 10 mm. Then carry out a 1:20 dilution of solu-
tion A by transferring 1 mL into another tube (“B”) and diluting it to 20 mL. The resulting concentration is 
0.50 mm. Solution B is 20-fold less concentrated than solution A, which in turn is 20-fold less concentrated 
than the original sample. Therefore, solution B is 400-fold less concentrated than the original sample.

Lastly, dilute solution B 1:20 by transferring 1 mL into another tube (“C”) and diluting it to 20 mL. 
Its concentration being only 0.025 mm, solution C proves to be a 1:8000 dilution of the original sample.

As Figure 6-2 shows, each of the solutions A, B, and C is 20 times less concentrated than the preced-
ing solution; that is, the dilution factor of each tube is 20 times higher than that of the preceding tube. 
The corresponding dilution ratio is the tube dilution, which is usually constant from one tube to the 
next and which is calculated from this equation:

Dtube =
Vsample

Vsample + Vdiluent

where Dtube  is the tube dilution, Vsample  is the sample volume, and Vdiluent  is the diluent volume. However, 
the dilution ratio of each tube relative to the starting solution is the sample dilution, and it reflects how 
much the original sample has been diluted up to that point in the sequence. In fact, because the tube 
dilution is the same for all tubes, the sample dilution forms a geometric series, which in this example is 
1/20, 1/400, 1/8000, or 1/201, 1/202, 1/203. Thus, we can calculate the sample dilution for a given tube 
from this equation:

Dsample = (Dtube)N

where N is the number of the tube in the sequence. For tube C in Figure 6-2, which is the third tube 
containing a dilution of the original sample, the sample dilution is (1/20)3,  or 1/8000; the concentration 
of the sample in tube C is 1/8000 of the original.

At this point, be sure to understand the difference between dilution ratio and dilution factor. As 
Equation 1 shows, the dilution ratio is the ratio of the concentration of a given dilution (the final con-
centration) to the concentration of the original sample (the initial concentration). In Figure 6-2, the 
concentration of solution B is 1/400th the concentration of the original sample, making the dilution 
ratio 1:400. Therefore, the dilution factor is 400, the reciprocal of the dilution ratio; this is the number 
by which we multiply the concentration of solution B to yield the concentration of the original sample.

Equation 6 allows for the fast calculation of a sample dilution. For example, if there are 10 tubes 
in the series and if the tube dilution is 1/4, then the sample dilution in tube #6 is (1/4)6,  or 1/4096. The 
usefulness of this equation, however, goes even further.

Suppose a technologist is going to test the susceptibility of a bacterial strain to various antibiotics, 
and she receives from the supervisor a suspension of the bacteria at a concentration of about 6.0 * 107  
cells/mL. In order to inoculate agar plates with the bacteria, she needs a suspension of cells at a concentra-
tion between 50 and 100 per mL. Therefore, she must achieve a dilution of the original sample between 
600,000-fold and 1,200,000-fold, a very large factor that calls for a serial dilution.

Using Equation 6, the technologist sets the value of Dsample  at 1/600,000. After choosing a conve-
nient tube dilution—say, 1:10—she calculates the number of tubes in the series necessary to bring the 
concentration of cells into the target range by substituting into Equation 6:

1
600,000

= a 1
10

b
N

Algebraic manipulation of this equation gives

 
loga 1

600,000
b

loga 1
10

b
= N

 5.8 = N

Because 5.8 is close to 6, this result means that, if the technologist performs six dilutions in a series 
with a 1:10 tube dilution, the last tube should have a sample dilution in the target range of 1/600,000 to 

Equation 6



98            chapter 6   •   Dilutions

1/1,200,000. She confirms this expectation by substituting into Equation 6 the values of 1/10 for Dtube  
and 6 for N, which do indeed give a Dsample  of 1/1,000,000.

Serology also employs the technique of serial dilution in the semiquantification of antibody titers. 
An antibody titer represents the amount of antibody present in serum against a certain antigen and is 
defined as the reciprocal of the highest sample dilution ratio at which antibody is detectable. This tech-
nique is used to screen patients for exposure to a pathogen or to evaluate a vaccination.

In short, the procedure is to prepare a dilution series with a tube dilution usually of 1:2, giving 
sample dilutions of 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, and so forth. Then antigen is added at a fixed vol-
ume to each dilution and the presence or absence of a reaction is noted. If, for example, there is a reaction 
in every dilution from 1:2 up to and including 1:32, then the antibody titer is said to be “32,” which is 
the reciprocal of the highest dilution ratio at which there is reaction. This means that there was enough 
antibody in the serum to react visibly with antigen when diluted 32-fold, but there was not enough to 
react when diluted 64-fold or more.

The titer goes up with the concentration of antibody in the serum because the dilution factor nec-
essary to make the antibody undetectable increases. In other words, a titer of 128 indicates a larger 
concentration of antibody than does a titer of 16 because rendering the reaction undetectable required 
an 8-fold higher dilution.

Summary
 7. For dilutions with very large factors—for example, 

7  1000:it may be more practical to perform serial dilu-
tions than simple dilutions.

 8. A serial dilution is a progressive series of dilutions in which 
each dilution is less concentrated than the preceding one 
by a constant amount. The tube dilution is the dilution ratio 
from one tube to the next, whereas the sample dilution is 
the dilution ratio of a given tube relative to the original 
sample.

 9. Calculate the tube dilution from this equation:

Dtube =
Vsample

Vsample + Vdiluent
 

 10. When the tube dilution is constant, the sample dilution forms 
a geometric series; one calculates it from this equation:

Dsample = (Dtube)
N 

 where N is the number of the tube in the sequence.

 1. Common reasons for making dilutions are (a) to bring back 
into range a test result that exceeded the upper limit of the 
analytical method, (b) to prepare standard solutions at vari-
ous concentrations, (c) to prepare a suspension of cells at a 
concentration suitable for plating, and (d) to semiquantify 
antibody titers.

 2. in a simple dilution, add together a volume of the liquid 
sample (e.g., serum, urine, peritoneal fluid) and a volume 
of liquid diluent.

 3. The extent of dilution is quantified by the dilution ratio:

dilution ratio =
Vinitial

Vfinal
=

C final

Cinitial
 

 4. identify a dilution by its ratio. if the ratio is 1/4, the dilution 
is “1:4” (pronounced “1-to-4”).

 5. The dilution factor is the value by which one multiplies the 
concentration of a dilution to give the concentration of the 
original sample. it equals the reciprocal of the dilution ratio.

 6. This equation expresses the relationship among the vol-
umes and concentrations before and after dilution:

VfinalC final = VinitialCinitial 

ChECkpoint 6-2

 1. When is serial dilution preferable to simple dilution?

 2. consider the serial dilution of a sample at 50,000 ng/dl. if the tube dilution is 1:10, 
what is the concentration in the fourth tube?

1.  Serial dilution is preferred when the final volume required for a simple dilution 
would be inconveniently large.

2.  Dsample = (Dtube)
N = (1>10)4 = 1>10,000. Thus, the concentration in tube #4 is  

5 ng/dl.
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Practice and Contextual Problems
 1. (LO 2) For each of the following dilutions, calculate the 

dilution factor between the original liquid and the final 
solution.

 (a) 20 ml of solution Q is diluted to 100 ml.

 (b) 500 μl of solution X is diluted to 2.0 ml.

 (c)  150 μl of serum is added to 300 μl of saline solution, 
and 20 μl of the resulting solution is added to 180 μl 
of saline solution.

 (d)  25 ml of liquid W is diluted with solution Z to 75 ml and 
then to 750 ml with saline solution.

 (e)  0.10 ml of plasma is diluted to 1.0 ml, and the result-
ing solution is brought to a final volume of 4.0 ml with 
diluent.

 (f) 50 μl of urine is added to 0.150 ml of water.

 (g)  300 μl of cerebrospinal fluid is added to 2.70 ml of 
diluent, and 0.50 ml of the resulting solution is added 
to 2.0 ml of saline solution.

 (h) 5 ml of liquid K is added to 5.0 l of water.

 (i)  10 μl of urine is added to 90 μl of diluent, and the 
resulting solution is brought to a final volume of 0.50 ml 
with water.

 (j) 5 μl of whole blood is pipetted into 1.0 ml of diluent.

 (k)  0.040 ml of serum is added to 260 μl of saline solution, 
and 150 μl of the resulting solution is added to 1.35 ml 
of saline solution.

 (l)  13 ml of solution M is brought to a final volume of 
100 ml with solution N.

 (m) 0.55 ml of plasma is mixed with 0.45 ml of diluent.

 (n) 1.0 ml of saline solution is mixed with 0.50 ml of water.

 2. (LO 2) Complete the following table.

Volume of 
Serum (�l)

Volume of 
Diluent (ml)

Dilution 
Factor

a 20 10

b 0.18 7

c 45 0.090

d 240 4

e 50 10

f 100 0.400

g 380 20

h 150 3

i 65 0.455

Serum
Sample

A B C

 3. (LO 1, 2, 4) Nine serum samples (a–i) appear in the table 
below. Each was diluted serially, into tubes A, B, and C. 
For each sample, provide the missing information about 
the serial dilution.

 4. (LO 2, 4) Propose a procedure for carrying out each of the 
following dilutions.

 (a)  in one step, dilute 10 μl of solution 1:50 such that the 
final volume is 0.50 ml.

 (b)  in one step, dilute 20 μl of serum 1:6 such that the final 
volume is 120 μl.

tube A tube B tube C

Volume 
of Serum 

(ml)

Volume 
of 

Diluent 
(ml)

tube 
Dilution

Volume 
From 

tube A 
(ml)

Volume 
of  

Diluent 
(ml)

tube 
Dilution

Volume 
From 

tube B 
(ml)

Volume 
of  

Diluent 
(ml)

tube 
Dilution

Sample 
Dilution

a 0.20 1.800 0.20 1.800 0.20 1.800

b 0.50 4.50 0.10 0.90 0.05 0.100

c 0.10 0.40 0.05 0.45 0.10 4.90

d 0.10 4.90 0.10 4.90 0.10 0.30

e 0.01 1:25 0.01 1:10 0.01 1:3

f 0.02 1:50 0.02 1:40 0.02 1:3

g 0.01 0.50 0.01 0.50 0.01 0.10

h 0.40 1:10 0.02 1:30 0.02 1:9000

i 0.025 1:20 0.025 1:20 0.025 1:12,000
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 (c)  in one step, dilute 15 μl of urine 1:30 such that the final 
volume is 450 μl.

 (d)  in a serial dilution of two equivalent steps, achieve a 
sample dilution of 1:100 starting with 50 μl of solution 
and ending with a final volume of 0.50 ml.

 (e)  in a serial dilution of three equivalent steps, achieve a 
sample dilution of 1:8000 starting with 10 μl of plasma 
and ending with a final volume of 0.20 ml.

  (f)  in a serial dilution of two equivalent steps, achieve a 
sample dilution of 1:25 starting with 1.0 ml of serum 
and ending with a final volume of 5.0 ml.

 (g)  in a serial dilution of five equivalent steps, achieve a 
sample dilution of 1:100,000 starting with 0.20 ml of 
solution and ending with a final volume of 2.0 ml.

 5. (LO 1, 2, 3, 4) If the pipets available to you have variable 
volumes over the range 2091000 μL, explain how to pre-
pare the following dilutions of a patient serum that has a 
total volume of 1.5 mL. So as not to waste diluent, keep 
the final volume of the dilution no greater than 1.0 mL.

 (a) 1:3 (b)  1:20

 (c) 1:100 (d)  1:201

 6. (LO 1, 2) The method you use for analyte X gives a reliable 
result from 5 to 50 ng/dL. After the raw first result for 
a particular patient sample comes out 59, you dilute the 
sample 1:5.

 (a)  if the raw second result (for the diluted sample) is 
54 ng/dl, the concentration of X in the original sample 
is greater than what value?

 (b)  if the raw second result (for the diluted sample) is 
6.2 ng/dl, what is the concentration in the original 
sample?

 (c)  if you dilute the 1:5 dilution by a factor of 2, and if the 
raw result for this further dilution is 52 ng/dl, the con-
centration of X in the original sample must be greater 
than what value?

 (d)  if you add 30 μl of the 1:5 dilution to 90 μl of diluent, 
and if the raw result for this further dilution is 46 ng/dl, 
what is the concentration in the original sample?

 7. (LO 1, 2) A technologist mixes 100 μL of patient sample 
with 300 μL of diluent and then multiplies the result by 3 in 
an attempt to correct for the dilution. Explain whether the 
corrected concentration is accurate, too high, or too low. 
If inaccurate, by what percentage is it too high or too low?

 8. (LO 1, 2) A technologist adds 40 μL of whole blood to 
1.0 mL of diluent and then multiplies the result by 25 in 
an attempt to correct for the dilution. Explain whether the 
corrected concentration is accurate, too high, or too low. 
If inaccurate, by what percentage is it too high or too low?

 9. (LO 1, 2, 4) A technologist is given a broth culture of bac-
teria believed to have about 100,000 viable cells per mL. 
In an attempt to determine this number more accurately, 
he decides first to carry out four serial dilutions, then to 

spread 0.10 mL from each dilution on an agar plate and let 
it incubate 24 hours, and finally to count the colonies.

  He begins by adding 1.0 mL of the culture to tube 1, which 
contains 9.0 mL of water; he mixes the resulting suspen-
sion well. From tube 1 he then transfers 1.0 mL to tube 2, 
which also contains 9.0 mL of water. From tube 2, in turn, 
he removes 1.0 mL and adds it to tube 3, in which there 
is again 9.0 mL of water. From tube 3, he transfers 1.0 mL 
into the 9.0 mL of water in tube 4. Finally, from tube 4 he 
withdraws 0.10 mL, spreads it on an agar plate, and counts 
the bacterial colonies 24 hours later.

 (a) if the original culture actually has bacteria at 92,300 
cells/ml, what is their concentration in tube 3?

 (b)  if tube 4 shows 190 cells/ml, what is their concentration 
in the original culture?

 (c)  if the original culture actually has bacteria at 5.2 * 105 
cells/ml, which tube would give the technologist about 
50 cells in 0.10 ml for spreading on an agar plate?

 (d)  suppose the technologist mistakenly dispenses 10.0 ml 
of water, rather than 9.0 ml, into each of tubes 1–4. 
What is the resulting sample dilution in tube 4?

 10. (LO 4) If the tube dilution is 1:3, how many tubes are 
required in a series to achieve a sample dilution of 1:243?

 11. (LO 1, 2) A laboratory uses an automated analyzer for 
quantifying glucose in serum. The reportable range for 
the method is 20–600 mg/dL. The analyzer is programmed 
to dilute automatically any sample whose glucose result 
lies above that range and then to repeat the test on the 
diluted sample.

 They receive a patient sample from the nephrology 
unit of the hospital. The analyzer reports the first 
(undiluted) result to be 1220 mg/dL. Because this lies 
beyond the method’s reportable range, the analyzer 
automatically dilutes the sample 1:2 and repeats the 
test. Eight minutes later, the second (diluted) result 
comes out as 688 mg/dL.

 A technologist takes the straight serum sample in hand 
and transfers 200 μL to another tube, to which he adds 
800 μL of the proper diluent. After thoroughly mixing the 
manually diluted sample, he loads it on the analyzer for 
glucose quantification. Coming out eight minutes later, the 
result for the manually diluted sample is 275, which falls 
within the reportable range of 20–600.

 (a)  What is the corrected glucose concentration for this 
sample?

 (b)  The technologist notices something in the data that 
leads him to wonder whether the laboratory should 
extend the reportable range for this particular method 
beyond 600 mg/dl. explain.

 12. (LO 1, 2) For protein electrophoresis tomorrow, a technolo-
gist uses the technique of membrane dialysis to concen-
trate a urine sample from a patient who may have multiple 
myeloma. In this dialysis technique, she put the urine in 
contact with a semipermeable membrane, through which 
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the water, electrolytes, and small molecules pass from 
the urine. This gradually causes the volume of the urine 
to decrease and the protein concentration in the urine 
to rise. When the volume of the urine has decreased into 
the proper range, she transfers it to a fresh tube where 
it will remain until she uses it in the electrophoresis step 
tomorrow.

  In this case, the protein concentration of the straight urine 
sample, that is, before membrane dialysis, is 86 mg/dL. 
The electrophoresis method she will use, however, requires 
the concentration to be 1.5–2.0 g/dL. Therefore, if the 
starting volume of the urine sample is 9.8 mL, what is the 
optimal range for the final volume?

 13. (LO 1, 2) A laboratory uses a method for total serum protein 
that has a linearity range of 2.0–12.0 g/dL. After the serum 
for patient Z gives a result of 7  12.0, a technologist dilutes 
100 μL of the serum with 200 μL of the proper diluent and 
then repeats the test. The second result, uncorrected for 
dilution, is 3.0. After confirming the calculation, he immedi-
ately notifies his supervisor that something may be wrong 
with the instrument. What led him to raise this possibility?

 14. (LO 1, 2) N-Telopeptide (NTx) is a product of bone resorp-
tion by osteoclasts, a process that normally occurs in bal-
ance with bone formation by osteoblasts. Released into 
the blood during resorption, NTx is specific to the degra-
dation of type I collagen in bone. The quantification of NTx 
in urine is used in the diagnosis of osteoporosis, which can 
be caused by various diseases, hereditary conditions, and 
nutritional deficiencies.

 A technologist’s laboratory uses company Q’s method for 
quantifying NTx in urine. When a sample’s concentration is 
greater than 3000 nm BCE (bone collagen equivalents), he 
must dilute it and repeat the assay. The method calls for 
diluting a sample 1:5 with another urine sample of known 
BCE concentration that is between 200 and 500 nm.

 One of the urine samples (sample A) has a BCE concentra-
tion greater than 3000 nm. The following problem refers 
to this sample.

 He dilutes sample A 1:5 with another urine sample (sample 
B) having a BCE concentration of 331 nm. If the uncor-
rected concentration of sample A diluted with sample B is 
1946 nm BCE, what is the BCE concentration in undiluted 
sample A?

 15. (LO 1, 4) A commercial screening test for syphilis consists 
of the semiquantitative detection of a substance called 
“reagin” which is present in the serum of an individual 
infected with a treponemal pathogen. The technologist 

places sample at a different dilution on each of five cir-
cles that have been drawn on a white card and then adds 
reagent to each and, after a few minutes of shaking incu-
bation, inspects for the presence of black clumps (a posi-
tive result) against the white background. Clumping is the 
result of agglutination caused by the presence of reagin in 
the specimen. Here is the layout of the card:

  

Procedure: Pipet normal saline solution (50 μL) onto each 
of circles 2–5. Next, place 50 μL of straight sample on each 
of circles 1 and 2. Then pump the mixture on circle 2 in 
and out of the pipet tip about 10 times. Of the resulting 
solution, transfer 50 μL onto circle 3 and repeat the proce-
dure for mixing and diluting through the fifth circle. From 
the fifth circle, remove and discard 50 μL, equalizing the 
volumes on all five circles. Then add reagent to each circle, 
mix well the solution within each circle, and incubate the 
card for 10 minutes.

 (a) Calculate the dilution ratio for each circle on the card.

 (b)  if the antibody titer in the patient’s serum is so high that 
even the most dilute circle gives a positive result, then 
carry the dilution further on a new card. First, dilute 
100 μl of sample into 1.50 ml of normal saline solution 
in a test tube. Then, use a pipet to put 50 μl of diluent 
onto each of circles 2–5. next, dispense 50 μl of the 
diluted sample onto each of circles 1 and 2. Then pump 
the mixture in circle 2 in and out of the pipet tip about 
10 times. of the resulting solution, transfer 50 μl onto 
circle 3 and repeat the procedure for mixing and dilut-
ing through the fifth circle. From the fifth circle, remove 
and discard 50 μl, equalizing the volumes on all five 
circles. Then add reagent to each circle, mix the solu-
tion within each circle well, and incubate the card for 
10 minutes. Calculate the dilution ratio for each circle 
on the card.

 (c)  Using only one card, outline an efficient serial dilution 
protocol that covers the range of 1:4 to 1:1024, with a 
constant dilution factor from circle to circle. After the 
serial dilution procedure and before addition of reagent, 
there should be no more than 75 μl of solution on each 
circle.

Screening Test for Syphilis

1 2 3 4 5

Go to www.myhealthprofessionskit.com <http://www.myhealthprofessionskit.com/> to access the Compan-
ion Website created for this textbook. Simply select “Clinical Laboratory Science” from the choice of disciplines. 
Find this book and log in using your username and password to access additional practice problems, answers 
to the practice and contextual problems, additional information, and more.
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Learning Objectives
At the end of this chapter, the student should be able to do the following:
 1. Recognize proportionality between two variables and calculate the pro-

portionality constant
 2. Plot data on a Cartesian graph
 3. Relate the slope-intercept equation to its plot on a graph
 4. Find the values of the slope and y-intercept from an equation or from a line 

on a graph
 5. Use the slope as a rate of change, particularly as a reaction rate
 6. Explain the purpose of standard curves
 7. Interpolate properly
 8. Relate a nonlinear equation to its plot on a graph
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Cartesian coordinate system
dependent variable
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extrapolation
graph
independent variable
interpolation

linear
ordered pair
ordinate
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proportionality constant
slope
slope-intercept form
standard
standard curve
y-intercept



Chapter 7   •   proportionality, Graphs, and rates of ChanGe            103

In practical terms, a graph is a visual summary of data. Its purpose is to simplify interpretation of the 
results by allowing us to see easily how one variable changes with another variable. In other words, a 
graph depicts the relationship between two or more variables. French philosopher and mathematician 
René Descartes (1596–1650) developed the graphing system we now use routinely, a system that unites 
algebra and geometry by representing numbers as points on a graph and equations as geometric shapes. 
In his honor, therefore, we call it the Cartesian coordinate system.

ProPortionality
Before considering graphs and the equations that describe them, we examine the phenomenon of 
proportionality, in which one variable changes in proportion to another. For example, consider the 
equation

y = 3x

The value of y is always three times the value of x. If x increases by a factor of 2, then y also increases 
by a factor of 2 (e.g., if x goes up from 5 to 10, then y goes up proportionally, from 15 to 30). Likewise, if 
x falls by a factor of 4, then y also falls by a factor of 4 (e.g., if x goes down from 12 to 3, then y goes down 
proportionally, from 36 to 9).

This relationship, of course, also holds true for negative values of x. If x increases from -6 to -2 
(a factor of 3), then y increases from -18 to -6 (also a factor of 3).

Accordingly, the factor of 3 in the above equation is known as the proportionality constant. In 
this case, its effect is to set the value of y at three times the value of x. Furthermore, because y always 
moves in the same direction as x and always in proportion to it, we say that y is “directly proportional” 
to x, or that y “varies directly” with x.

In general, then, y is directly proportional to x when
y = kx

where k is a nonzero constant.
Now consider the consequence of putting a negative sign in front of the proportionality constant:

y = -3x

In this equation, the value of y is always the negative of three times the value of x. If x increases by a 
factor of 2, then y decreases by a factor of 2 (e.g., if x goes up from 5 to 10, then y goes down proportion-
ally, from -15 to -30). Likewise, if x falls by a factor of 4, then y rises by a factor of 4 (e.g., if x goes down 
from -3 to -12, then y goes up proportionally, from 9 to 36).

As for the positive proportionality constant, this relationship holds true for negative values of x. If 
x increases from -6 to -2 (a factor of 3), then y decreases from 18 to 6 (also a factor of 3). Even though 
in this case y always moves in the opposite direction from x but in proportion to it, we again say that y 
is “directly proportional” to x, or that y “varies directly” with x because the two variables are still related 
by an equation of the form

y = kx

The term “inversely proportional” is often applied to the case in which k is negative in the above 
equation, but this is incorrect. Inverse proportionality involves the reciprocal of x:

y =
k
x

where k is a nonzero constant.

Straight lineS
Let us first consider a simple example. Suppose we have the equation

y = 2x + 2

We regard x as the independent variable because it is the one we control; in other words, we choose values 
of x and then observe the resulting values of y. Therefore, we treat y as the dependent variable because 
its value is determined by the value we select for x; in other words, y depends on x. Table 7-1 H lists 10 
chosen values of x and the corresponding values of y.
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To see at a glance how y changes with x, we construct a graph of the data (Figure 7-1 n), putting y on 
the vertical axis (the ordinate) and x on the horizontal axis (the abscissa). Each data point on the graph 
represents an ordered pair of corresponding (x,y) values from Table 7-1.

Notice that the data points are located such that we can draw a straight line through them. Because 
of this property, we call the data linear, and we say that the equation that generated these data points 
(y = 2x + 2) describes a straight line. Consequently, any ordered pair on that line satisfies the equa-
tion, an example being x = 5.5 and y = 13. Notice also that the line running through the data crosses 
the y-axis at y = 2 when x = 0 (Figure 7-1A). Thus, we say that the y-intercept of this line is “2,” and 
we symbolize it as b.

Figure 7-1B depicts another property of our line. Notice that, for every change of 1 in x, the value 
of y changes by 2. For example, in going from x = 5 to x = 6, the graph goes from y = 12 to y = 14. 
Thus, the ratio of the change in y to the change in x is

change in y
change in x

=
14 - 12
6 - 5

=
2
1

= 2

Likewise, in going from x = 2 to x = 9, the graph goes from y = 6 to y = 20. The ratio of the 
change in y to the change in x is still 2:

change in y
change in x

=
20 - 6
9 - 2

=
14
7

= 2

n Figure 7-1 A graph of the data in Table 7-1 (pink line), indicating the y-intercept (panel A) and the slope 
(panel B).
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A B

x y = 2x + 2

 1  4

 2  6

 3  8

 4 10

 5 12

 6 14

 7 16

 8 18

 9 20

10 22

H table 7-1 Corresponding Values of a Dependent and Independent Variable
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For a straight line, then, the ratio of the change in y (which we symbolize as ∆y) to the change in 
x (which we symbolize as ∆x) is the slope of the line. We represent the slope as m, the first letter in the 
French word monter, meaning “to rise.”

slope = m =
∆y

∆x

The slope is also sometimes called the “rise over the run” because it compares the vertical change (the rise) 
to the horizontal change (the run).

In our equation y = 2x + 2, y varies directly with x, and the slope is the proportionality constant. 
Whenever x increases, y increases proportionally. Therefore, as Table 7-1 and Figure 7-1 show, x and y 
in this equation are related by a straight line.

In general, the equation of any straight line is

y = mx + b

where m is the slope and b is the y-intercept. Equation 2 is the slope-intercept form of the equation of a 
straight line. See Appendix 7-1 on the website for the derivation of this equation.

Slope as the Rate of Change
In the laboratory, as in all of science and technology, the slope is significant in that it represents the rate of 
change. Consider, for example, the distance someone who is running has covered at various times after 
starting (Table 7-2 H). Like the data in Table 7-1, these data give a straight line (Figure 7-2 n).

 Equation 1

 Equation 2

n Figure 7-2 A graph of the data in Table 7-2 (pink line).
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(16, 1.3)
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time (minutes) Distance (miles)

0 0.00

9 0.72

16 1.28

25 2.00

31 2.48

38 3.04

49 3.92

H table 7-2 Hypothetical Data for a Person Running

aPPenDix 7-1
“Forms of the Equation of a Line”
www.myhealthprofessions.kit.com
PEARSON

www.myhealthprofessions.kit.com
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The slope of this line, ∆y/∆x, is the runner’s speed, which is simply the rate at which the distance (y) 
changes with time (x). Any two points on the line may be used in the calculation:

slope = m =
∆y

∆x
=

3.9 miles - 0.7 miles
49 minutes - 9 minutes

=
3.2 miles

40 minutes
= 0.08 miles/minute

or

slope = m =
∆y

∆x
=

3.0 miles - 1.3 miles
38 minutes - 16 minutes

=
1.7 miles

22 minutes
= 0.08 miles/minute

In the laboratory, a typical example of the slope as the rate of change occurs in assays that monitor 
the appearance of a reaction product as a function of time. Consider this chemical reaction:

a S x

Suppose it is part of the assay for an analyte in serum. The instrument that runs this assay determines the 
amount of X (in “picomoles”) present in the reaction vessel at the very moment all the components have 
been added together (“time zero”) and then again at each of six time points thereafter. At the beginning of 
the reaction, there is no X present, whereas at 100 seconds, 20 picomoles have been generated.

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90 100

Time (seconds)

A
m

ou
nt

 o
f X

 (
pm

ol
)

The slope of this line represents the rate at which the amount of X changes:

slope = m =
∆y

∆x
=

16 pmol - 4 pmol

80 seconds - 20 seconds
=

12 pmol

60 seconds
= 0.2 pmol/second

What this value means is that the amount of X increases by 0.2 pmol every second for the duration of 
the assay (from 0 to 100 seconds).

Furthermore, it is possible to write the equation for this line because we know both the slope, which 
is 0.2, and the y-intercept, which is 0:

y = 0.2x + 0

or

y = 0.2x
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The slope of this line represents the rate at which the amount of A changes:

slope = m =
∆y

∆x
=

88 pmol - 98 pmol

60 seconds - 10 seconds
=

-10 pmol

50 seconds
= -0.2 pmol/second

What this value means is that the amount of A falls by 0.2 pmol every second for the duration of the assay 
(from 0 to 100 seconds).

As for the previous assay, it is possible to write the equation for this line because we know both the 
slope, which is -0.2, and the y-intercept, which is 100:

y = -0.2x + 100

The “ -0.2” in the equation has units of “pmol/second,” and the y-intercept has units of “pmol.” 
Therefore, as in the assay with the positive slope, all the units in this equation are congruous:

pmol =
pmol

second
* seconds + pmol

æ æ æ æ
y m x b

Suppose, however, that the assay monitors not the appearance of product but the disappearance of 
reactant. In this case, the instrument quantifies A rather than X at various times. For example, it shows 
that, at the beginning of the reaction, there are 100 picomoles of A in the reaction mixture, whereas, at 
100 seconds, 80 picomoles remain.

74

76

78

80

82

84

86

88

90

92

94

96

98

100

0 10 20 30 40 50 60 70 80 90 100

Time (seconds)

A
m

ou
nt

 o
f A

 (
pm

ol
)

The slope of 0.2 is the proportionality constant, and y varies directly with x. Remember, further-
more, that in the equation the “0.2” has units of “pmol/second” and the y-intercept has units of “pmol.” 
Therefore, all the units in the equation are congruous:

pmol =
pmol

second
* seconds + pmol

æ æ æ æ
y m x b
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This example illustrates the fact that slopes can be negative (and that an axis of the graph does not 
have to start at a value of “0”). In this case, the two variables move in opposite directions but nevertheless 
proportionally.

Rather than the change in the amount of product or reactant, an assay might monitor the change 
in concentration. For example, consider the following graph of hypothetical data for the same reaction 
as above, A S X.

At the beginning of the reaction, there is no X in the reaction mixture, whereas at 100 seconds, X is 
present at 600 ng/mL. The slope of this line represents how fast the concentration of X changes:

slope = m =
∆y

∆x
=

480 ng/mL - 120 ng/mL

80 seconds - 20 seconds
=

360 ng/mL

60 seconds
= 6 ng/mL/second

What this value means is that the concentration of X goes up by 6 ng/mL every second.
Because the slope is 6 and the y-intercept is 0, the equation of the line is

y = 6x + 0

or

y = 6x

The proportionality constant is “6 ng/mL/second,” and y varies directly with x. All the units in this equa-
tion are congruous:

ng/mL =
ng/mL

second
* seconds + ng/mL

æ æ æ æ
y m x b
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ChECkpoint 7-1

 1. Calculate the slope of the line in the following graph and write the equation.
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1. The slope is

slope = m =
∆y

∆x
=

70 - 10
30 - 0

=
60
30

= 2

and the equation is

y = 2x + 10

2. The slope is

slope = m =
∆y

∆x
=

20 - 100
1.6 - 0

=
-80
1.6

= -50

and the equation is

y = -50x + 100

 2. Calculate the slope of the line in the following graph and write the equation.
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In the clinical laboratory, it is often necessary to determine the concentration of a substance from 
some property of the substance that can be directly measured. The most common ways to quantify a 
chemical substance exploit the interaction of matter and light. There are others, of course, but we will 
use light in order to demonstrate the purpose of standard curves.

Sometimes a chemical reaction emits light of a particular wavelength, a phenomenon called 
 chemiluminescence. That light is measurable. Sometimes a chemical substance absorbs light in a process 
called absorption, discussed in a later chapter. The amount of absorbed light, called the absorbance, is 
also measurable. Fluorescence is the process of absorbing light of a certain wavelength and then emitting 
light at a lower wavelength. As in the other two cases, that light is measurable.

Thus, a chemical substance in a solution can be quantified by measuring the amount of light it 
absorbs or emits under well-defined conditions. The trick, however, lies in reasoning backward from the 
measurement of light to the amount of substance present. In other words, we must answer this question: 
from the amount of light we measure, how do we know how much substance is present?

Enter the standard curve. In the laboratory, we typically have several solutions of the substance we 
intend to quantify, each at a unique concentration. These solutions are called standards or calibrators, 
and the manufacturer has already determined their concentrations to high accuracy by some method 
other than the one we are using. What we do with these standards is to measure, say, their absorbances, 
and then to plot those values against concentration on a graph (Figure 7-3 n). Often, but certainly not 
always, the data are linear. From this standard curve we discover the answer to the question posed in 
the previous paragraph because every point on a line satisfies the equation.

Suppose we have a solution of substance Q at an unknown concentration. If we measure the absor-
bance of this solution, we can then use the standard curve in Figure 7-3 to ascertain the concentration 
of substance Q from any value we might observe between 0 and 0.900. For example, if the absorbance  

StanDarD CurveS
As mentioned in connection with Figure 7-1, any point on this line satisfies the equation. Conse-
quently, if we know the value of x, say, 50 seconds, we can quickly calculate the corresponding value  
of y to be 300 ng/mL:

 y = 6x

 y = 6(50 ng/mL)

 y = 300 ng/mL

The other way to find the y value that corresponds to an x value of 50 seconds is to draw a vertical 
line from the x value up to the data line and then to draw a horizontal line over to the y value:
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of our solution is 0.525, then we know the concentration is 70 mg/dL; if the absorbance is 0.375, then the 
concentration is 50 mg/dL. This process of using a standard curve to predict the value of one variable 
from that of another is called interpolation.

Notice, however, that we have no information beyond a concentration of 120 mg/dL. We do not 
know whether the relationship between absorbance and concentration for substance Q remains linear. 
Therefore, if the absorbance of our solution falls above 0.900, say, 1.133, we cannot confidently predict 
the corresponding concentration from our standard curve. Doing so is known as extrapolation, and it 
is generally unacceptable.

We can reason to the equation for our standard curve in Figure 7-3. The y-intercept is 0 (or very 
close to 0) and the slope is

slope = m =
∆y

∆x
=

0.750 - 0.150
100 mg/dL - 20 mg/dL

=
0.600

80 ng/mL
=

0.0075
mg/dL

What this value means is that the absorbance increases by 0.0075 for every increase of 1 mg/dL in the 
concentration. This is a rate of change that does not involve the element of time. Realize, furthermore, 
that the units on the slope can be written in another way:

m =
0.0075
mg/dL

= 0.0075a dL
mg

b = 0.0075 dL/mg

Therefore, the equation for the standard curve in Figure 7-3 is

y = (0.0075 dL/mg) x + 0

or

y = (0.0075 dL/mg) x

We can confirm this equation by substituting our interpolated values for the x and y variables. We said that 
a y value of 0.525 corresponds to an x value of 70 mg/dL; these two values do indeed satisfy the equation:

0.525 = (0.0075 dL/mg)(70 mg/dL)

A later chapter in the book and online appendices discuss more-rigorous methods for finding equa-
tions—methods that do not rely on visual inspection of a plot. Such methods are especially important 
when the data do not fall neatly on a straight line.

n Figure 7-3 Hypothetical standard curve relating absorbance of a chemical 
substance to its concentration. Absorbance values of 0.375 (green line) and 0.525 
(blue line) correspond, respectively, to concentrations of 50 mg/dL and 70 mg/dL.
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nonlinear graPhS
In the clinical laboratory, data sometimes describe curves rather than lines. In nonlinear graphs, the 
dependent variable is not proportional to the independent variable, and their equations, accordingly, 
do not fit the model for a straight line, which is y = mx + b. Figure 7-4 n shows three examples. Even 
though finding their equations is often difficult (and sometimes impossible) without a computer, we 
can employ the same process of interpolation as we do on straight lines. Even so, it is generally easier to 
use straight lines as standard curves.

The strategy behind finding the equations for nonlinear data appears in a later chapter. At this 
juncture, suffice it to say that computers are very efficient at performing this task on our behalf.

n Figure 7-4 Three examples of nonlinear graphs (pink curves) and their   
general equations, in which y is not proportional to x. Interpolation, however, is  
still possible (green lines).

y �
1�e�x

1
y � logx
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ChECkpoint 7-2
Using the following standard curve, interpolate the concentrations corresponding to three 
specified absorbance values: 0.165, 0.621, and 0.997.
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  Absorbances of 0.165, 0.621, and 0.997 correspond to concentrations, respectively, 
of 90 pmol/mL, 340 pmol/mL, and 543 pmol/mL.
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Summary
 8. The slope is significant in that it represents the rate of 

change.
 9. A standard curve is usually a plot of a measurable prop-

erty (e.g., absorbance) as a function of concentration. Its 
purpose is to allow the concentration to be determined by 
interpolation.

 10. Interpolation is the process of predicting the value of one 
variable from the value of another by means of an equation 
or a graph.

 11. Predicting the value of one variable from the value of 
another that lies outside the range of a standard curve is 
extrapolation, which is generally unacceptable.

 12. In nonlinear graphs, the dependent variable is not pro-
portional to the independent variable, and their equa-
tions, accordingly, do not fit the model for a straight line 
(y = mx + b).

 1. A graph is a visual summary of data. Its purpose is to sim-
plify interpretation of the results by allowing us to see easily 
how one variable changes with another variable.

 2. Two variables, x and y, are directly proportional when 
related by the equation:

y = kx

  where k is the proportionality constant.
 3. The independent variable is controlled; it determines the 

dependent variable.
 4. Each data point on a graph represents an ordered pair of 

(x,y) values. The x value is usually plotted on the horizontal 
axis and the y value on the vertical axis.

 5. data are said to be linear when a straight line fits them.
 6. The slope-intercept form of the equation of a straight line 

is

y = mx + b

  where m is the slope and b is the y-intercept.
 7. The slope of a line is

slope = m =
∆y

∆x

Practice Problems
 1. (LO 1) In which of the following cases is y directly propor-

tional to x?

 (a) y = 6 + x  (b) y = 18.3x - 9.6

 (c) y = 4x/(4 + x)  (d) y = 0.5 - (x/5)

 2. (LO 2) By means of graphing software or pen and paper, 
plot each of the following equations at x = 1, 2, 3, 4, 
and 5.

 (a) y = 4x + 3  (b) y = 3x - 1

 (c) y = 0.62x + 2.6  (d) 6x + 3y = 18

 (e) x = 0.25y + 4   (f) y = x

 (g) y = 5  (h) x = -10y

 (i) y = -2x + 15

 3. (LO 2, 3, 4) Plot each of the following data sets and write 
the equation for the line.

 (a) 

 (b) 

 (c) 

 (d) 

x y

1 9

2 14

3 19

4 24

5 29

x y

1 15

2 12

3 9

4 6

5 3

x y

20 9

40 25

60 41

80 57

100 73

x y

0. 066 209.9

0. 198 229.7

0. 396 259.4

0. 462 269.3

0. 660 299.0
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 4. (LO 4, 5) Each of the following lines represents the change in concentration in a chemical 
reaction. Calculate the reaction rate corresponding to each line.
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 5. (LO 2, 7) From the following data, construct a standard 
curve. By inspection, interpolate the concentration of each 
solution below from the absorbance given.

 8. (LO 3, 4) Match the following 10 graphs with their equa-
tions. Assume that all the graphs have the same x-axis 
scales and the same y-axis scales.

 (a) A = 0.682  (b) A = 0.177

 (c) A = 0.304  (d) A = 0.098

 6. (LO 2, 7) From the following data, construct a standard 
curve. By inspection, interpolate the concentration of each 
solution below from the luminescence given. (Lumines-
cence is measured as the number of photons of light that 
strike the detector in a given second.)

 (a) 9,862,430  (b) 8,903,779

 (c) 4,388,021  (d) 355,612

 7. (LO 6, 7) Which of the interpolations in problem 6 is the 
most prone to error? Explain.

y � 0.7x � 4

y � �0.7x � 9

x � 6

y � �x � 10

y � 0.7x � 1

y � x

y � 0.2x � 5

y � �0.7x � 7

y � 5

y � �0.2x � 5

A B

C

D

E F

G

H

I

J

 9. (LO 3, 4) Referring to the graph 
at the right, explain whether 
each of the following statements 
is true.

 (a) If the equation for line a is 
y = 2x + 5, then the slope of 
line C must be less than 2.

 (b) If the equation for line C is 
y = x + 10, then the y-inter-
cept of line b is 10.

 (c) If the equation for line C is y = 2x + 6, then the equa-
tion y = 4x + 12 is possible for line a.

 (d) The equation y = -3x + 8 is possible for one of the 
three lines.

 (e) The equation y = 6x - 7 is possible for one of the three 
lines.

C

B

A

0

Concentration
(mmol/L) absorbance

 0 0

 3 0.151

 6 0.299

 9 0.448

12 0.602

15 0.750

Concentration
(mmol/L)

luminescence
(counts/second)

  0                0

  5           7710

 10          121,951

 20 1,649,485

 30 5,000,000

 50 8,852,691

 60 9,411,765

 70 9,673,650

 80 9,806,081

 90 9,878,049

100 9,919,651
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 10. (LO 8) Match the following nonlinear graphs with their 
equations.
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 2. (LO 2, 3, 4) Your laboratory’s assay for a particular analyte 
requires checking the standard curve weekly for shifting 
due to such factors as deterioration of the reagent. This 
process entails running two standards in the assay, drawing 
the line between them, and comparing that line to the exist-
ing standard curve. The standard curve is considered valid 
if the slope of the new line is within 10% of the previous 
slope and if the new y-intercept is within 10% of its previous 
value. (The measurement is in units of “counts per second.”)

 (a) Plot the following data and calculate the slope and 
y-intercept of the standard curve.

 (b) The following results come from a two-standard check. 
Is the existing standard curve still valid?

Contextual Problems
 1. (LO 6, 7) The following standard curve pertains to an assay for 

a hormone. The test employs chemiluminescence and reports 
“relative light units” (RLU) being emitted from the reaction 
mixture at the end. The technology is such that luminescence 
decreases as concentration of the hormone increases.

 (a) What is the concentration of a specimen whose lumines-
cence is 700,000 RLU? 1,900,000 RLU? 200,000 RLU?

 (b) Notice that this graph is semilogarithmic (i.e., the x-axis 
is logarithmic). Plot the same data on arithmetic axes 
and compare the two graphs for usefulness as standard 
curves.

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

0.01 0.1

ng/mL

R
LU

1 10

 (c) Consider two hypothetical scenarios for the two-standard 
check.

Scenario A: slope = 278, y@intercept = 35,193
Scenario B: slope = 340, y@intercept = 41,582

 In which of these two scenarios is the new line closer to the 
existing standard curve at a concentration of 120 μmol/L 
and above? Explain.

PEARSON

Go to www.myhealthprofessionskit.com <http://www.myhealthprofessionskit.com/> to access the Companion 
Website created for this textbook. Simply select “Clinical  Laboratory Science” from the choice of disciplines. Find 
this book and log in using your username and password to access additional practice problems, answers to the 
practice and contextual problems, additional information, and more.

Concentration
(�mol/l)

Counts per  
second

20 50,117

120 80,046

Concentration
(�mol/l)

Counts per  
second

5 42,972

20 47,142

40 52,702

80 63,822

120 74,942

160 86,062
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Learning Objectives
At the end of this chapter, the student should be able to do the following:
 1. Set forth the reasons that a laboratory professional should have a working 

understanding of statistics
 2. Recognize the difference between accuracy and precision
 3. Explain central tendency in data sets and the significance of typical values
 4. Calculate, interpret, and properly use the three most common measures 

of center (mean, median, mode) and recognize the relationship between 
the mean and accuracy

 5. For a normal distribution, explain (a) the equality of the mean, median, and 
mode, and (b) the 68-95-99.7 Rule

 6. Explain the usefulness of the standard deviation as a measure of  dispersion, 
carry out its calculation, and interpret it properly

 7. Calculate and interpret the coefficient of variation and recognize its 
 relationship to precision

 8. Explain the usefulness of regression in the clinical laboratory
 9. Generate linear regression equations (by means of a calculator or computer)
 10. Explain the difference between linear and nonlinear regression
 11. Interpolate properly from regression lines
 12. Calculate the correlation coefficient (by means of a calculator or computer)
 13. Interpret the correlation coefficient properly, recognizing its strengths and 

limitations
 14. Explain the similarities and differences between regression and correlation
 15. Explain the purpose of data weighting
 16. Interpret the coefficient of determination properly
 17. Use the basic techniques (visual inspection, root-mean-squared error, stan-

dard error of the slope, confidence intervals) for judging goodness-of-fit 
for regression lines

 18. Explain the basic strategy behind nonlinear regression
 19. State and interpret a null hypothesis
 20. Select a significance test appropriate for the question to be answered
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This chapter presents the statistics that are important in a medical laboratory. Below is a list of reasons 
that a clinical laboratory professional should develop a working understanding of statistics.

	 •	 To make rational decisions about whether laboratory instruments and reagents are functioning 
properly so that test results can be reported

	 •	 To manage the many other elements of quality control in the laboratory
	 •	 To understand the information in printed materials from manufacturers of test methods or labora-

tory instruments
	 •	 To compare a new method or instrument in the laboratory with the one already in use
	 •	 To follow the reasoning presented in research papers, scientific talks, and continuing-education 

courses

Implicit to all these reasons are two notions that are tightly connected to quality control in the 
laboratory: accuracy, which is the degree of correctness of a laboratory result, and precision, which is 
the degree of reproducibility in repeated measurements. In other words, accuracy refers to how close a 
laboratory value is to the true value, whereas precision refers to how tightly clustered several replicates 
are, whether or not they are close to the true value. One might say, then, that accuracy reveals the quality 
of a result, and precision reveals the quality of the measurement behind that result. The clinical labo-
ratory seeks both accuracy and precision, in which case the measurements are all close to, and tightly 
grouped around, the true value.

The CenTral TendenCy
One of the paramount questions arising from every set of numerical data is this: if there is a typical 
value, what is it likely to be? The answer to this question lies in the central tendency of the data. There 
are three common measures of central tendency: (1) the median, which is the midpoint of the data;  
(2) the mean, which is the balance point of the data; and (3) the mode, which is the value that occurs 
most often in the data.

The Median
To find the median, arrange all the entries in the data set, including all repeats, in ascending or descend-
ing order and then locate the midpoint. If the number of entries in the data set is odd, the median is the 

 21. Interpret the probability represented by “p value”
 22. Calculate values for the F, t, and χ2 statistics
 23. Use the values of F, t, and χ2  to assess the statistical significance of 

differences
 24. Explain the requirements and limitations of significance tests

Key Terms
accuracy
arithmetic mean
categorical
central tendency
coefficient of determination
coefficient of variation
confidence interval
contingency table
correlation
correlation coefficient
critical value
degrees of freedom
linear regression
mean
median

mode
nonlinear regression
normal distribution
null hypothesis
outlier
p value
precision
regression analysis
specimen pairing
standard deviation
statistically significant
t value
unimodal
variance
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middle entry. If the number is even, the median is the calculated value halfway between the two middle 
entries. Here are two examples:

 Equation 1

n	 Figure 8-1 The weights-on-a-beam analogy for the mean of a data set. The 
individual values: 4, 14, 19, 22, 26, 26, 29, 31, 32, 33, 33, 33, 33, 34, 35, 35, 39. The 
mean is 28.

4 9 14 19 24 29 34 39

Mean
(Balance point, fulcrum,

center of gravity)

Note that when the number of entries is even, the median is calculable by adding the two middle 
entries and dividing the sum by 2 (this happens to be the mean of the two middle values, discussed next). 
For the second example above,

33.9 + 41.5
2

= 37.7

The Mean
To find the mean, or the balance point, of the data, add all the values together and divide the sum by the 
number of those values:

x =
x1 + x2 + x3 + c + xn

n

where x is the mean of the data and n is the number of entries in the data set. Consider, for example, this 
simple data set: 1, 2, 2, 4, 5, 6, 8. The mean is 4 (28 , 7).

The mean is also the unique value that can replace every observed value in the data set without alter-
ing the total of those values. For example, replacing each member of the above data set with its mean, 
which is “4,” gives the same total:

1 + 2 + 2 + 4 + 5 + 6 + 8 = 28 = 4 + 4 + 4 + 4 + 4 + 4 + 4

We can regard the mean as the “center of gravity” of the data. If we place the data points on a number 
line, like weights on a beam, then the mean is the fulcrum, or the balance point (Figure 8-1	n).

data Median Comment

2, 3, 4, 6, 8, 9, 10 6
Because the number of values is odd (7), the median is 
the middle value, or “6.”

33.1, 33.8, 33.9, 41.5, 42.0, 42.4 37.7 Because the number of values is even (6), the median is 
the calculated value halfway between the two middle 
entries:

3.8 3.8

33.9 37.7 41.5
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The mean we discuss here is the arithmetic mean (pronounced “arith-MET-ic”), one of the three 
classical Pythagorean means; the other two are the geometric and harmonic means. The geometric mean, 
though encountered much less often than the arithmetic, does have functions in the clinical laboratory, 
one of which occurs in the calculation of the “International Normalized Ratio” (see Chapter 10). Appen-
dix 8-7 on the website discusses the geometric mean in depth.

The Mode
The mode is the value that occurs most often. In Figure 8-1, that value is 33. Because it has only one mode, 
we call this data set unimodal, although it is possible for a data set to have more than one peak, in which 
case the set may be bimodal or even trimodal. Realize, however, that the mode may not be the center, or 
near the center, of the data; therefore, the mode is not necessarily a measure of central tendency.

How Outliers Affect the Central Tendency
An outlier is an extreme value, one that falls well above or below the other data. Consider the following 
three data sets.

data Mean Median Mode

a 25, 27, 30, 30, 32, 35, 37 31 30 30

B 25, 27, 30, 30, 32, 35, 75 36 30 30

C 25, 27, 30, 30, 32, 35, 37, 75 36 31 30

appendix 8-7
“Arithmetic Means, Geometric Means, 
and Log-Normal Distributions”
www.myhealthprofessions.kit.com
PEARSON

ChECkpoint 8-1

 1. Evaluate the mean, median, and mode for this data set: 1.9, 2.6, 2.3, 1.7, 2.0, 2.3, 1.8, 
2.2, 2.3.

 2. If the value of 2.6 in these data were replaced by 3.2, which of the measures of central 
tendency would change? Why?

 3. If we added a data value of 1.8 to the original set of nine data, which of the measures 
would change? Why?

1. Mean = 2.1, median = 2.2, mode = 2.3

2.  The mean would change because the new value of 3.2 goes directly into its 
calculation.

3.  The mean would change because the additional value of 1.8 goes directly into 
its calculation. The median would change because the additional datum pushes the 
number of values up to 10, shifting the middle one.

Data sets B and C each have an outlier (“75,” in pink). In set B, the outlier has replaced the final entry in  
set A; in set C, the outlier has merely been added to set A. As the table shows, the outlier markedly changes 
the mean, although it barely affects the median and does not disturb the mode at all. This illustrates 
a major difference among these three measures of central tendency. The median and mode resist the 
influence of outliers better than does the mean; in other words, the median and mode are generally more 
robust. This is so because an outlier goes directly into the calculation of the mean, whereas it may not 
change either the number of entries in the data set or the most frequent value.

dispersion
As explained earlier, the central tendency answers the question about what a typical value is for a data 
set. Now we face the corollary to that question: how typical is that typical value?

Summarizing a data set by reporting the mean (or median or mode) is often not enough.  
Although it locates the center of the data, the mean does not tell us how the data are dispersed around 

www.myhealthprofessions.kit.com
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it; in other words, it does not tell us whether the data themselves are tightly clustered or widely spread. 
The following two data sets illustrate this point.

data Mean

a 10, 11, 12, 13, 14, 15, 16 13

B 3, 5, 8, 13, 18, 21, 23 13

data set n
x1 

(mg/dl)
xn 

(mg/dl)
x 

(mg/dl)
(x1 - x)2

 (mg2/dl2)

a
n

i = 1
(xi - x)2

(mg2/dl2)

standard deviation  
(s)  

(mg/dl)

a 7 10 16 13  9  28 2.2

B 7 3 23 13 100 378 7.9

 Equation 2

Despite having the same mean, the two data sets have different dispersions; the data are closer together in 
A than they are in B. Therefore, “13” is more typical of the data in A than it is of the data in B.

Standard Deviation
The most common measure of dispersion is the standard deviation (Equation 2). In a simple sense, what 
it represents is the average variation of the data around their mean. We can interpret the standard devia-
tion as an indicator of the spread, as a typical distance between the data and the mean. A high value tells 
us that on average the data lie far from the mean, whereas a low value tells us they are clustered around it.

standard deviation = s = Sa
n

i = 1
(xi - x)2

n - 1

where x is the mean of the data and n is the number of entries in the data set. The sigma (Σ) notation 
serves as shorthand for summation:

a
n

i = 1
(xi - x)2 = (x1 - x)2 + (x2 - x)2 + (x3 - x)2 + c + (xn - x)2

The value under the sigma specifies the starting x, and the value above the sigma specifies the final x. In 
this case, then, we add the deviations together by starting with x1 and finishing with xn.

appendix 8-1
“Degrees of Freedom”
www.myhealthprofessions.kit.com
PEARSON

For data set A above,  s = 2.2. What this means is that, on average, the data values lie at a distance of 2.2 
from their mean, which is 13. For data set B,  s = 7.9; the larger standard deviation of B is consistent with 
the wider spread in the data.

Although calculators and spreadsheet software compute s for us, understanding Equation 2 goes a 
long way toward helping us avert misinterpretations of the standard deviation. The following sequence 
outlines the strategy within Equation 2, beginning with the numerator.

 1. Subtract the mean from each data value. This measures the distance from that particular datum 
to the mean.

 2. Square each difference. This eliminates any negative signs that may have arisen from the subtraction 
when the mean was greater than the data value. As the above table shows, however, this also squares 
the units, which consequently seem to make no sense; after all, what does a squared concentration 
mean? Step 5 solves this problem.

 3. Add together all the squared differences. The numerator is the sum of all the squared deviations 
from the mean.

 4. Divide the numerator by n − 1. This quantity, n - 1, is the number of degrees of freedom, 
which equals the number of independent values in the data set. Notice that it is one less than the 
number of members in the data set (n). As the size of the data set increases, the values of n - 1 and 
n become practically equal, and we may use either one in the denominator. For a more thorough 
explanation of degrees of freedom, consult Appendix 8-1 on the website. At the end of this step, what 

www.myhealthprofessions.kit.com
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appears under the square-root sign is the average squared deviation from the mean, known as the 
variance (see the next section).

 5. Take the square root. This solves the problem created in step 2 and restores the original units. Our 
measure of dispersion is now in the same units as the original data.

Variance
Although we rarely see the variance of a data set used to quantify dispersion, it appears in the F test, 
which this chapter addresses later, and in other contexts. Therefore, it is wise at this point to know that 
the variance is the square of the standard deviation:

variance = s2 =
a
n

i = 1
(xi - x)2

n - 1

Like the standard deviation, then, a high variance tells us that the data lie far from the mean, whereas a 
low variance tells us they are clustered around it.

Coefficient of Variation
The standard deviation can sometimes be misleading. For example, a standard deviation of 2 has quite 
a different impact when the mean is 5 than it has when the mean is 100. With a mean of 100, an s of 2 
says that the average deviation is only 2% of the mean. With a mean of 5, however, the same value of s 
becomes a much larger 40% of the mean.

Therefore, in comparing two data sets with different means, it is necessary to have a measure of disper-
sion that relates the standard deviation directly to the mean. The coefficient of variation meets this need:

CV =
s
x

* 100%

where CV = coefficient of variation, s = standard deviation, and x = mean.
In effect, the CV “standardizes” the standard deviation by expressing it as a percentage of the mean. 

As a dimensionless ratio, therefore, its value stays the same even when the units of measurement change. 
Suppose, for example, your assay results have a mean of 30 mg/dL with a standard deviation of 2 mg/dL. 
If you must report these values in units of g/L, the conversion would change the mean to 0.30 and the 
standard deviation to 0.02. The CV, however, would stay the same at 7%.

The coefficient of variation is the most common measure of precision, which tells us how tight the 
data are around their mean. This contrasts with accuracy, which tells us how close the mean is to the 
true or accepted value.

The norMal disTriBuTion
Many variables in the physical, biological, and behavioral sciences adopt what is called a normal dis-
tribution (see Figure 8-2	n). The word normal is used not because the distribution is proper or correct 
but (and this distinction is important) because it is considered typical or standard for a variable that 
depends on random processes.

In the clinical laboratory, the curve in Figure 8-2 might represent the serum cholesterol concentra-
tions determined in 100 randomly selected patients. In that case, the independent variable (the x-axis) 

ChECkpoint 8-2

 1. Why is it necessary to specify dispersion along with a measure of central tendency?

 2. Calculate the standard deviation and coefficient of variation for this data set: 5.1, 9.6, 
7.7, 6.3, 5.8, 6.6, 8.1, 7.4, 6.9, 6.2, 8.4, 6.5.

1. Dispersion gives information about how the data are distributed about the center.

2. SD = 1.2 (1.249), CV = 18% (17.7%) (mean = 7.05).
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n	 Figure 8-2 The normal distribution. The vertical dashed line indicates the 
mean, median, and mode of the independent variable.
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would be the cholesterol concentration, and the dependent variable (the y-axis) would be the number 
of times each concentration was observed. In other disciplines—ecology, for example—the independent 
variable might represent the widths of maple leaves in southern Québec; in sociology, the mathematics 
test scores for all ninth-grade students in Chicago; in aeronautics, the ages of all passenger airplanes in 
the U.S. fleet.

Clearly, the lowest and the highest values of the independent variable occur least often, whereas 
values near the center occur most often. It is easy to see how this distribution acquired its nickname, 
“the bell curve.”

The curve in Figure 8-2 is defined by the mean and standard deviation. Theoretically, given only 
those two numbers, one could draw the entire curve. It would be the same as if one knew the value of 
every data point.Although many variables in the sciences adopt this distribution, some variables do not, 
and there is a tendency among some researchers to invoke the normal distribution even before there is 
enough evidence to support it.

The normal distribution has several important properties, two of which we discuss now.

	 •	 The mean, median, and mode are equal. In other words, the balance point, the middle value, and the 
most common value are all the same (Figure 8-2, dashed line). This is so because the curve is sym-
metrical. In fact, the curve can be wider, narrower, taller, or shorter, and its peak may shift in one 
direction or the other, but the normal distribution is always symmetrical.

	 •	 The normal distribution follows the 68-95-99.7 Rule. In a normal distribution of data (Figure 8-3	n), 
68% of the values fall between the mean plus one standard deviation (x + s) and the mean minus 
one standard deviation (x - s). Moreover,  95% of the data are between (x + 2s) and (x - 2s), and 
99.7% are between (x + 3s) and (x - 3s).

In the clinical laboratory, the standard deviation guides the acceptance and rejection of quality con-
trol runs and determines whether patient specimens are tested. Suppose, for example, that your labora-
tory runs a test for ferritin in serum. Before running any patient specimens, you must ensure that your 
analytical method is functioning properly. You run your ferritin control solution and compare the result  

n	 Figure 8-3 The 68-95-99.7 Rule for a normal distribution. The mean is x and 
the standard deviation is s.

68% of data 

x−s x +s x +2s x +3sx−2sx−3s x

95% of data 

99.7% of data 
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(147 ng/mL) with the mean (151 mg/dL) for the 60 other ferritin control results that have been recorded 
for the previous 6 weeks. If the standard deviation of those control results is 3 ng/mL, then 68% of the data 
fall between 148 and 154 ng/mL, or between x - 1s and x + 1s (i.e., between 151 - 3 and 151 + 3).  
Moreover, 95% of the data would fall between 145 and 157 ng/mL, or between x - 2s and x + 2s  
(i.e., between 151 - 6 and 151 + 6).

Your result of 147 ng/mL falls between one and two standard deviations below the mean.  
At this point, the question is whether your result is close enough to the mean to conclude that 
the analytical method is functioning properly, and, therefore, whether to proceed with patient 
specimens. Laboratories have policies governing this decision based on the deviation of a given 
result from the mean. If your laboratory’s established limit for the ferritin assay is {  2s, then your 
result of 147 ng/mL passes the standard-deviation test, and you proceed to run patient samples. 
However, if the limit is {  1s, then your result fails, and you do not run patient samples until the 
malfunction is rectified.

ChECkpoint 8-3

 1. What is true about the mean, median, and mode in a normal distribution and what 
property of the normal distribution curve accounts for this?

 2. What dimension of a normal distribution curve does the standard deviation measure?

 3. How many of the data lie within two standard deviations of the mean?

1. They are all equal because of the property of symmetry.

2. Width

3. 95%

regression
In the clinical laboratory, it is often necessary to construct a standard curve, to compare two methods for 
quantifying the same analyte, to examine interference by some substance in an assay for another, or to 
ascertain for some other reason the relationship between two variables. In such a case, we use regression 
analysis to discover the mathematical equation that relates the independent and dependent variables. 
Moreover, when that equation describes a straight line, correlation specifies the strength and direction 
of the relationship.

Linear Regression
Linear regression by the least-squares method is a technique that fits a straight line to a set of data points 
consisting of values for a dependent variable, y, and corresponding values for an independent variable, x. 
For a detailed explanation of linear regression, consult Appendix 8-2 on the website.

In fitting a straight line, regression establishes the mathematical relationship between the two vari-
ables and thereby makes it possible to calculate a value for one variable from a value for the other. An 
important use of regression lines lies in determining the unknown concentration of a substance from 
some response variable, such as absorbance, fluorescence, or radioactivity. In such a case, the line func-
tions as a standard curve.

For example, one might measure the absorbance of the substance at each of several concentrations, 
plot the concentration against the absorbance, and then fit a line to the data points (Figure 8-4	n). If a 
solution of the same substance at an unknown concentration has an absorbance of, say, 0.295, the regres-
sion line shows the corresponding concentration to be 5.6 mg/L. This process of using a standard curve 
to predict the value of one variable from that of another is interpolation.

Another important use of regression lines is in the comparison of two methods or instruments for 
the same analyte. The results from one method are plotted against the results from the other, and the 
agreement between the two methods is evaluated (Figure 8-5	n).

appendix 8-2
“The Reasoning Behind Linear 
 Regression”
www.myhealthprofessions.kit.com
PEARSON
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In simplest terms, the goal in drawing the best-fit line is to find the one closest to the data points. 
Though one can accomplish this fairly well by using his or her eye, there are established mathemati-
cal techniques that deliver uniformity, accuracy, and precision in the results. Because a straight line is 
defined by the equation y = mx + b, linear regression finds the slope (m) and y-intercept (b) of the 

n	 Figure 8-4 Regression line functioning as a standard curve. The data points 
(pink) are plotted, and then the regression line that fits the data best is drawn 
through the points. The broken line shows interpolation of a concentration of  
5.6 mg/L at A = 0.295.
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n	 Figure 8-5 Regression line in comparison of two methods for the same ana-
lyte. The data points (pink) are plotted, and then the regression line that fits the 
data best is drawn through the points.
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 Equation 3

 Equation 4

theoretical line such that the distance between the actual points and the line is as small as it can be. Equa-
tions 3 and 4 show how to calculate the slope and y-intercept:

slope = m =
a
n

i = 1
xiyi - nx y

a
n

i = 1
xi

2 - nx2

y@intercept = b =
ya

n

i = 1
xi

2 - xan
i = 1

xiyi

a
n

i = 1
xi

2 - nx2

where xi is the ith value of x, yi is the ith value of y, x is the mean of the x values, y is the mean of the y 
values, and n is the number of data pairs. Fortunately, spreadsheet software can compute these values 
in the blink of an eye. For calculating the y-intercept, moreover, we can use an easier formula once we  
know the value of the slope. Because the regression line goes through the center of the data, which is the 
point (x, y), the formula for the y-intercept is simply a rearrangement of y = mx + b, with the values 
for x and y being their respective means:

y@intercept = b = y - mx

Caveats
There are two risks of which one should be aware in using regression lines. The first is the direction of 
interpolation. Equations 3 and 4 calculate the best-fit line in such a way that the dependent variable may be 
interpolated from the independent variable, as in Figure 8-4. The reverse, however, can be risky. Neverthe-
less, interpolating the independent variable from the dependent variable is commonly done on standard 
curves when all the data points are so close to the line that the two directions of interpolation give practically 
the same result. For more detail on the direction of interpolation, consult Appendix 8-3 on the website.

The second caveat lies in the difference between interpolation and extrapolation. Interpola-
tion makes a prediction within the range of values of the independent variable that were used to  
generate the standard curve. In Figure 8-4, this range is 0.040–0.4200. Extrapolation, however, 
makes predictions outside that range. Accordingly, extrapolation is unacceptable because the  
relationship between the two variables may not be linear outside the range of x values used to find 
the best-fit line.

Nonlinear Regression
When a linear model fails to fit the data, one of two courses of action might offer a solution:

 1. linear transformation of the data, although sometimes no transformation succeeds and at other 
times the procedure is prohibitively difficult, and

 2. nonlinear regression, a technique that fits a curve rather than a straight line to the data points.

Before high-speed computers were easily accessible, fitting nonlinear data to a curve was so 
difficult that standard practice was to linearize the data, rendering them much easier to analyze.  
Among the more-common linear transformations were Scatchard plots of binding data and  
Lineweaver-Burk plots of enzyme kinetics data. Although they are still used, methods like these have 
become almost obsolete, given the ease with which computers can fit nonlinear regression models 
to experimental data.

The weakness of linear transformations lies in their tendency to distort uncertainty in the data. 
Even so, linear transformations are very useful for displaying data because visual interpretation of such 
plots is often easy and quick and because straight lines can expose features of the data that curves 
obscure.

As explained above, linear regression finds values for the slope and y-intercept of the straight 
line that fits the data best. Unlike linear regression, however, nonlinear regression is iterative; it 
starts with an estimate of each variable in the equation of the curve and then adjusts those values 

appendix 8-3
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repeatedly until the curve is as close as possible to the data points. Spreadsheet software has built-
in nonlinear regression algorithms that carry out the procedure, draw the curve, and display the 
equation.

There are sophisticated programs that fit curves to data with no guidance from the user. Such pro-
grams fit the data to perhaps thousands of reasonable equations and then, at the end, present those 
equations with the best fits. But computers cannot go further because they do not understand the scien-
tific context of the data. Thus, even though one curve might fit the data somewhat better than another, 
the other curve might be a more suitable choice because it makes assumptions that are in line with the 
underlying science.

Most spreadsheet software, however, asks the user to tell the algorithm where to begin, by selecting 
the curve (and its basic equation) most likely to fit the points. Here are five examples of the various curves 
sometimes encountered in the laboratory:

“Exponential
growth curve”

b � ecx
a

x
ay � � b y �

y � aex � b

y � ax3 � bx2 � cx � dy � a log x � b

“Exponential decay
curve”

“Exponential association
curve” or

“logarithmic curve”

“Reverse sigmoidal
curve”

“Third-order
polynomial curve”
or “cubic curve”

y �
1021 � e0.5x

2056

0
0

2.4

2.0

1.6

1.2

0.8

0.4

5 10 15 20 25 30

The quantities a, b, c, and d are constants whose values the algorithm adjusts in order to fit the data points 
to the curve as closely as it can. Here is an example of the above reverse sigmoidal curve for which spread-
sheet software has found values for the constants a, b, and c:

Data Weighting
In the above explanations of regression, it was assumed that every point on the line (or curve) has the 
same weight, or reliability, as every other point. This assumption is acceptable if the uncertainty at any 
point is the same as it is at any other point (i.e., if the uncertainty is uniform).

Often, however, the uncertainty is not uniform across the data points. Consequently, the points 
with greater uncertainty in their values influence the regression calculations more than do the points 
with less uncertainty. The resulting regression line, therefore, may be wrong.

An effective way to circumvent this problem is to weight the data equally. To do so, a weighting 
factor is incorporated into the least-squares calculations—a factor that has the effect of equalizing the 
uncertainty across all the data points. Even though the computers that control laboratory instruments 
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ChECkpoint 8-4

 1. What is interpolation?

 2. Using the equations of linear regression, calculate the slope and y-intercept of the 
best-fit line through the following data.

1. The practice of predicting the value of one variable from that of another.

2. Slope = 29.8; y@intercept = 3.03.

usually weight data automatically when necessary, there are some techniques and instruments that 
require the user to choose the data-weighting factor. For more detail on data weighting, see Appendix 
8-4 on the website.

appendix 8-4
“Data Weighting”
www.myhealthprofessions.kit.com
PEARSON

Judging goodness-oF-FiT
Finding the best-fit straight line through a set of data points does not necessarily mean that the line is 
useable. There are various tools the scientist can employ to test the suitability of the line as a model for 
the data, that is, to test its goodness-of-fit. After all, a line can be drawn through any set of points, no 
matter how reasonable or ridiculous the result.

Visual Inspection
Consider, for example, the three attempts at line-fitting in Figure 8-6	n. The fit is reasonable only for 
the data points in Figure 8-6A, giving a line that is reliable throughout the range of x values. By contrast, 
the data points in Figures  8-6B and 8-6C clearly describe curves for which the regression lines drawn 
through them are nearly useless for interpolation. Either of those lines would predict from an x value a  
y value that, in almost every case, is too far from the actual y value. Therefore, the first test for goodness-
of-fit should always be visual inspection: look at a plot of the data and ascertain whether the points trace 
out a straight line. If the data points do not look linear, the regression line fails the first test, and you 
should consider a nonlinear model instead.

n	 Figure 8-6 Proper and improper line-fitting to data points. Panel A:  
Reasonable fit because data look linear. Panel B: Unreasonable fit because data 
look curved. Panel C: Unreasonable fit because data look sigmoidal.

A B C

x y

10  61.5

20  93.2

30 115.7

40 148.3

50 183.6

60 212.9

www.myhealthprofessions.kit.com


130            Chapter 8   •   StatiStiCS

Root-Mean-Squared Error
Another test for goodness-of-fit is the root-mean-squared error (RMSE), which is known also as the 
standard error of the estimate or the residual standard deviation:

RMSE = H an
i = 1

(yi - yn i)2

n - 2

where yi is the actual value of y at x, and yni is the predicted value of y at x. As the standard deviation of a 
data set is the average deviation from the mean, the RMSE represents the average deviation of the y values 
from the line. When the regression model fits the data well, the points lie close to the line, and the RMSE 
is small. Although there is no fixed criterion for accepting or rejecting the RMSE, we use it in conjunction 
with other statistics to evaluate a given regression line.

Standard Error of the Slope
The third test for goodness-of-fit is the standard error of the slope (Sm):

Sm =
RMSEAa
n

i = 1
(xi - x)2

Equation 6 says that, as the range of variable x widens, the denominator increases, and the RMSE has a 
smaller influence on the error in the slope. What this means is that one can draw a line more confidently 
through data points that are spaced farther apart because it is easier to see the trend. For an example, see 
Appendix 8-5 on the website.

Confidence Intervals
The fourth test for goodness-of-fit is the confidence interval. A confidence interval is a range that con-
tains the true value of some parameter a large proportion of the time. For example, the 95% confidence 
interval for the slope of a regression line encloses the true slope 95 times out of 100. A confidence interval 
can be computed with any limit, such as 90% or 99%, although the 95% limit is most common.

Understand what “95%” means and what it does not mean. What it means is that, because of the 
way in which confidence intervals are computed, if data are independently gathered 100 times from the 
same population and a 95% confidence interval is calculated each time, then 95 of those intervals will 
contain the true slope. It does not mean that any one of the 100 confidence intervals has a 95% probability 
of containing the true slope.

A confidence interval for the slope is calculated from this formula:

CI =  m {t * Sm()*
margin of error

where CI is the confidence interval, m is the calculated slope, t is the t-score, and Sm is the standard error 
of the slope. The product of t and Sm is called the margin of error. Thus, what Equation 7 says is that the 
confidence interval is the slope of the line plus and minus the margin of error.

By this point in the process, both m and Sm have already been computed, leaving only t to be deter-
mined. Again, if the slope is calculated for each of 100 samplings, and if a 95% confidence interval is 
computed each time, then 95 of those intervals will contain the true slope. The t value is, in this case, the 
number of standard errors at which a calculated slope lies from the mean of all 100 calculated slopes.

The t value to be selected is gleaned from a table that was established long ago and is now available  
in many printed and electronic resources; a small section of that table appears in Table 8-1	H. The  
selection of a t value depends on the following two factors. (This chapter discusses the t value again in 
the sections on Student’s t test and the paired t test.)

	 ●	 The number of degrees of freedom(discussed above in the section on the standard deviation and 
in more detail in Appendix 8-1 on the website): for the slope of a line, this is n - 2 (where n is the 

 Equation 5

 Equation 6

 Equation 7

appendix 8-5
“Example: How the Range of x 
 Values Affects Uncertainty in a 
 Regression Line”
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number of data points) because the slope and intercept have already been calculated. As mentioned 
above, the number of degrees of freedom in the standard deviation of a data set is n - 1.

	 ●	 The probability (p) that the true slope lies outside the confidence interval: for a 95% confidence 
interval, p is 0.05, meaning that the true slope has no more than a 5% probability of falling outside 
the confidence interval. (See “Significance Testing” for more detail on p values.)

Consider the following example. Suppose that for a regression line the calculated slope is -23.6, 
the standard error is 0.93, and the number of data points is 10. To find the appropriate t value, locate 
the row for 8 (n - 2) degrees of freedom and go across to the column for p = 0.05. The t value is 2.31. 
Substituting these numbers into Equation 7 gives

CI = -23.6 { (2.31 * 0.93) = -23.6 { 2.15

Thus, the 95% confidence interval for the slope extends from -25.8 up to -21.5.
Calculating the 95% confidence interval for the y-intercept is similar. First, the standard error of the 

intercept (Sb) is computed:

Sb = RMSE * c a
n

i = 1
xi

 2

na
n

i = 1
(xi - x)2

Then, we substitute the value of Sb into an equation analogous to Equation 7:

CI =  b { t * Sb()*
margin of error

Calculation of the 95% confidence interval proceeds as it does for the slope, with a t value corresponding 
to p = 0.05 at n - 2 degrees of freedom.

Figure 8-7A	n shows that, for any regression line, the confidence interval (whether at the 95% level 
or some other) resulting from the combined uncertainties in the slope and intercept is concave. The 
upper and lower boundaries of the confidence interval are themselves curves, not because they include 
possible regression curves along with straight lines but because they enclose all possible regression lines 
from the combined uncertainties (Figure 8-7B n).

p

degrees of Freedom 0.10  0.05  0.01

  1 6.31 12.71 63.70

  2 2.92  4.30  9.92

  3 2.35  3.18  5.84

  4 2.13  2.78  4.60

  5 2.01  2.57  4.03

  6 1.94  2.45  3.71

  7 1.89  2.36  3.50

  8 1.86  2.31  3.36

  9 1.83  2.26  3.25

 10 1.81  2.23  3.17

 20 1.72  2.09  2.85

 30 1.70  2.04  2.75

120 1.66  1.98  2.62

  ∞ 1.64  1.96  2.58

H	 TaBle 8-1 t Values for Confidence Intervals

 Equation 8

 Equation 9
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n	 Figure 8-7 Panel A: A typical confidence interval (pink dashed) around a 
regression line (solid black). Panel B: Concavity of the confidence interval. The cal-
culated regression line (solid black) is shown with three other possible regression 
lines within the confidence interval (pink dashed).

A B

ChECkpoint 8-5

 1. What is the significance of the RMSE?

 2. In calculating the 90% confidence interval for the slope, with 32 data points, what is 
the t value?

1. The RMSE represents the average deviation of the y values from the regression line.

2.  For a 90% confidence interval, the p value is 0.10. For 32 data points, there are  
30 degrees of freedom in the slope. Thus, the t value is 1.70.

n	 Figure 8-8 Panel A: Perfect positive correlation. Panel B: Perfect negative 
correlation. Panel C: No linear correlation.

r � 1

r � 0r � �1A

C

B

 Equation 10

CorrelaTion
Correlation gauges the strength of association between measured variables by evaluating their joint 
behavior. In other words, it shows the strength of their tendency to change together. The correlation 
coefficient, which is represented as r (Equation 10), ranges from -1 to 1, with a negative value mean-
ing that one variable decreases as the other increases and a positive value meaning that the two variables 
move in the same direction. When r = 1, the correlation is positive and perfect, with all the data points 
lying on a line that has a positive slope, meaning that x and y rise together (Figure 8-8A	n). When 
r = -1, the correlation is negative and perfect, with all the data points lying on a line that has a negative 
slope, meaning that y falls as x rises (Figure 8-8B). When r = 0, there is no linear relationship between 
the variables (Figure 8-8C).

rxy =
a
n

i = 1
(xi - x)(yi - y)¢ Jan

i = 1
(xi - x)2 R Jan

i = 1
(yi - y)2 R ≤1/2

Equation 10 allows calculation of r directly from the original data. Because the calculation is tedious, 
we allow calculators and computers to carry it out at lightning speed. Appendix 8-6 on the website lays 
out the reasoning behind Equation 10 in detail.

appendix 8-6
“The Reasoning Behind the 
 Coefficients of Correlation and 
 Determination”
www.myhealthprofessions.kit.com
PEARSON

www.myhealthprofessions.kit.com


Chapter 8   •   StatiStiCS            133

How do values other than -1, 0, and +1 look on a plot and what do they mean? Figure 8-9	n shows 
examples. As r moves closer to zero, either from -1 or from +1, the data fit a linear model less well; as a 
result, predicting the value of one variable from a value of the other becomes less reliable.

Caveats
The correlation coefficient is sometimes used improperly, especially when applied to standard curves. 
Strictly speaking, the use of r is appropriate when the data represent random samples drawn from a 
larger population. In other words, it is suitable when each variable has been measured, as, for example, 
in a comparison of the results from one method with those from another method for randomly chosen 
patient samples (Figure 8-5). The correlation coefficient is generally not appropriate when one variable 
is measured and the other is selected a priori, as in the case of a standard curve (Figure 8-4).

Nevertheless, the correlation coefficient is often reported for standard curves, perhaps for several 
reasons: (1) it is expected, (2) computers can calculate it fast, (3) it is easy to communicate as a single 
number, and (4) it can help give a coarse evaluation of the linearity along with other statistics. How-
ever, to judge the goodness-of-fit of a regression line for standard curves, the measures discussed in the 
previous section (e.g., RMSE, confidence intervals) are better. Table 8-2	H summarizes the differences 
between regression and correlation.

There is one final caveat. Always look at the plot of the data before interpreting the value of r because 
the coefficient is useful only to the extent that it reveals how tightly the two variables are coupled to each 

n	 Figure 8-9 Increase in scatter as r approaches 0 from either -1 or +1.

r � 0.99

r � 0.50

r � �0.99

r � �0.70

r � 0.70

r � �0.50

regression Correlation

Finds the best-fit line, whether or not the data 
are linear.

Does not find a line through the data. Shows how 
tightly two variables are coupled to each other (i.e., 
how strong their tendency is to change together).

Values for independent variable are selected.  
Values for dependent variable are measured.

Values for both x and y are measured. Does not 
distinguish between independent and dependent 
variables.

Appropriate for standard curves. Appropriate for method comparisons.

Values of slope and intercept depend on units. Value of coefficient does not depend on units.

H	 TaBle 8-2 A Brief Comparison of Regression and Correlation
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other. Strong correlation, whether positive or negative, does not guarantee linearity; even curved data 
can give an r value close to +1 or -1 (Figure 8-10A	n). Furthermore, a value of r close to zero does not 
preclude a relationship between the variables; definite nonlinear relationships can show weak correlation 
or none at all (Figure 8-10B).

n	 Figure 8-10 Examples of misleading r values. Panel A: Strong negative correlation but nonlinear relationship 
(reverse-sigmoidal or backward “S”). Panel B: No linear correlation but definite relationship (parabola, y = x2).

r � 0r � �0.99

A B

ChECkpoint 8-6

 1. What does correlation show about two variables?

 2. What is the range of values for the correlation coefficient?

 3. If y decreases as x increases, how does the value of r relate to zero?

 4. Calculate the correlation coefficient for the following data.

 5. What is true about the variables when the correlation coefficient is most meaningful?

 6. What is the most important step to take before interpreting the correlation coefficient 
for a set of data? Why?

1. It shows how strongly they tend to change together.
2. -1 to +1
3. r 6 0
4. r = 0.977
5. Each variable has been measured.
6.  Visual inspection. Nonlinear data can have r values close to +1 or -1, and data with 

clear relationships can have r values close to zero.

x y

 4.4  64.5

19.6  91.2

35.3 110.7

41.2 155.3

66.1 189.6

69.8 222.9

appendix 8-6
“The Reasoning Behind the 
 Coefficients of Correlation and 
 Determination”
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CoeFFiCienT oF deTerMinaTion
The square of the correlation coefficient (r2, albeit often symbolized as R2) has a special interpretation. 
Appendix 8-6 on the website explains this in detail.
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Known as the coefficient of determination, r2 is the proportion of the total variation in y that is 
explained by the variation in x.

r2 =
variation in y explained by variation in x

total variation in y

What does this mean? Obviously, y changes as x changes; that is to say, as x moves away from its 
own average, y moves away from its own average. If r2 is 1.0, then the variation in x explains 100% of the 
variation in y, and all the data points lie on the regression line. But if r2 is, say, 0.86, then the variation 
in x explains only 86% of the variation in y, and the data points do not all fall exactly on the regression 
line. The other 14% of the variation in y is accounted for by factors known or unknown; in other words, 
factors other than the change in x push the actual y values off the regression line.

This leads to another interpretation of r2. If there were no correlation whatsoever, then predicting 
the value of y from a value of x would be no better than just citing the mean of the y values. If the correla-
tion were perfect, however, then three conclusions would follow: (1) r2 would equal 1, (2) the variation in 
x would explain all the variation in y, and (3) using the line to predict the value of y from a value of x would 
have 100% less error than just citing the mean of the y values. Therefore, r2 can be regarded as the propor-
tional reduction in error that comes from using the regression line to predict y over using the mean. An r2 of 
0.81 means not only that the variation in x accounts for 81% of the variation in y, but also that the error 
in predicting y from the regression line is 81% smaller than it would be in predicting y from the mean.

ChECkpoint 8-7
Consider the data in Checkpoint #6, item 4. How much of the variation in y is due to fac-
tors other than the variation in x?

  The value of r2 is 0.955. This means that the variation in x accounts for 95.5% of the 
variation in y; thus, 4.5% is due to other factors.

signiFiCanCe TesTing
Clinical laboratory work sometimes entails deciding whether an observed result from a study or an 
experiment is due to chance alone; that is, sometimes one has to decide whether an apparent difference, 
such as that between two laboratory methods or between a control group and a test group, is a true dif-
ference. Significance testing is a systematic approach that, when used properly, can become part of the 
evidence that helps us make these decisions. Beware, however, that even though significance testing has 
been, is being, and will continue to be, conducted by most researchers and laboratory professionals, it is 
sometimes misapplied and overemphasized.

Let us discuss the basics of significance testing, especially as it is used in the real world, before 
addressing the dangers. We begin by considering the following examples of questions that significance 
testing might help settle.

	 •	 Your laboratory is comparing a new cell counter to the one currently in use. For 20 randomly 
chosen patients, the new instrument gave a mean RBC count of 4.13 * 106 per μL, whereas 
for the same 20 patients the current instrument gave 4.28 * 106 per μL. Is the difference 
between the RBC counts due to chance or does the new instrument return counts that are 
truly higher?

	 •	 Volunteers taking drug X after 3 months had a mean serum cholesterol concentration of 180 mg/dL, 
whereas other volunteers taking a placebo had a mean concentration of 184 mg/dL. Is the difference 
between the two cholesterol concentrations due to chance or to the drug?

	 •	 Your laboratory is comparing a manual method for quantifying estriol in serum with an auto-
mated method. For 10 repeated measurements on a standard estriol solution, the manual method 
gave a mean concentration ({  SD) of 9.9 { 1.1 ng/mL, whereas the automated method gave 
11.4 { 1.4 ng/mL. Is the difference between the two standard deviations a statistical anomaly or 
is the manual method truly more precise?
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There are three steps to each significance test presented in this chapter:

 1. Define the null hypothesis (H0), which states that there is no difference between the results being 
compared.

 2. Summarize the data, execute any preliminary calculations, and then compute the test statistic.

 3. Assuming the null hypothesis to be true, use the test statistic from step 2 to determine the probability 
(p) of observing the results that were actually obtained.

The F Test
There are times when a clinical laboratory must compare the precisions of two different instruments, 
techniques, or methods. One widely used tool for performing such a comparison is the F test, named in 
honor of Sir Ronald Fisher, who invented the method in the 1920s.

The strategy is straightforward. If method A is more precise than method B, then A’s variance 
(the square of the standard deviation) is lower than B’s variance.

Step 1. We state the null hypothesis (H0), that there is no difference between the two variances:

H0:  s 1
2 = s 2

2

Step 2. We calculate our test statistic, the F value. To do so, we take the ratio of the larger s2 to the 
smaller s2:

F =
larger s2

smaller s2

If the two methods have the same precision, then their variances are equal and the value of F 
is 1. Notice that, whenever the two variances are unequal, the value of F is greater than 1 because we 
have taken the ratio of the larger to the smaller. Thus, as one of the methods becomes more precise 
than the other, their variances diverge, and the value of F rises above 1. But how much greater than 
1 must the ratio be for us to conclude that the two variances are truly different and, therefore, that 
one of the methods is more precise than the other?
Step 3. To answer this question, we select a p value and compare the calculated value of F with a 
predetermined value of F, which is called the critical value. The p value represents the probability 
of our having observed this difference between the two variances if the two methods were equally 
precise.1 If greater than the critical value, our calculated F value is high enough for us to reject the null 
hypothesis and to conclude that one method is probably more precise than the other—at the level of 
certainty we chose in the p value. If less than or equal to the critical value, our calculated F value is not 
high enough for us to reject the null hypothesis (H0); therefore, we treat the two variances as statistically 
equal. Take, for example, the following hypothetical data.

1For Equations 7 and 9, the p value answers this question: what would be the probability of obtaining, in a random sample, the slope 
(or intercept) actually found if there were no linear relationship between x and y?

Method number of samples Mean Variance

A 6 22.9 3.66

B 8 25.1 6.13

 Equation 11

The calculated value of F is

F =
6.13
3.66

= 1.675

In the table below, we find the critical value of F that applies to our data. The numerator has  
7 degrees of freedom (n - 1) and the denominator has 5. The corresponding box in the table  
contains two numbers, 4.8759 and 10.455, the latter being italicized. They are the critical values at 
two levels of certainty, and those levels of certainty are reflected in the p value.
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degrees of Freedom in numerator

1 2 3 4 5 7 10

degrees of 
Freedom in 
denominator

1
61.45

4052.2

199.50

4999.5

215.71

5403.4

224.58

5624.6

230.16

5763.6

236.77

5928.4

241.88

6055.8

2
18.513

98.503

19.000

99.000

19.164

99.166

19.247

99.249

19.296

99.299

19.353

99.356

19.396

99.399

3
10.128

34.116

9.5522

30.817

9.2766

29.457

9.1172

28.710

9.0135

28.237

8.8867

27.672

8.7855

27.229

4
7.7086

21.198

6.9443

18.000

6.5915

16.694

6.3882

15.977

6.2560

15.522

6.0942

14.976

5.9644

14.546

5
6.6078

16.258

5.7862

13.274

5.4095

12.060

5.1922

11.392

5.0504

10.967

4.8759

10.455

4.7351

10.051

7
5.5914

12.246

4.7375

9.5467

4.3469

8.4513

4.1202

7.8466

3.9715

7.4605

3.7871

6.9929

3.6366

6.6201

10
4.9645

10.044

4.1028

7.5594

3.7082

6.5523

3.4780

5.9944

3.3259

5.6363

3.1354

5.2001

2.9782

4.8492

Critical Values for the F Statistic
Roman type: p = 0.05; italic type: p = 0.01

If the null hypothesis is true and the two variances are the same, then p is the probability that a calculated 
F value above the critical value would have occurred. An F value above the critical value can still appear 
even if the two methods are equally precise, although it is unlikely. In the case of our data, therefore, we can 
say that, if our two variances are statistically the same, then there is only a 5% probability of observing an 
F value of at least 4.8759. What this means is that, if our two methods have the same precision and if we 
run the comparison experiment 100 times, each time calculating an F value, then only five of the 100 F 
values we calculate would be at least 4.8759.

If our calculated F value is higher than 4.8759, then the likelihood is small that it came about without 
a difference in precision. If that likelihood is small enough, we do reject the null hypothesis and conclude 
that the ratio reflects a true difference between the two variances. We say that the difference is statisti-
cally significant. But we must always specify the level of certainty that determined the critical value; in 
this case, it is p = 0.05.

The italicized number, 10.455, is the critical value when p is 1%. It is logical that achieving this 
greater level of certainty requires the calculated F value to be even higher than for p = 5%. For us to 
be even more certain about the conclusion, the difference between the two variances must be greater.

For a p of 0.05, our calculated F value, 1.675, is less than the critical value, 4.8759, preventing us from 
rejecting the null hypothesis. Therefore, we say that the difference observed between the two methods 
is statistically nonsignificant and that we cannot conclude, from this information alone, that methods A 
and B have different precisions.

Student’s t Test
This statistical test is a good example of necessity being the mother of invention. William S.  
Gosset, who published under the pseudonym “Student,” developed this tool in the early 1900s to help 
him solve problems in his work as a statistician for a brewery. We use Student’s t test to compare the 
means of two groups when one variable is categorical (non-numerical) and the other is numerical.  
An example of this is a comparison of turnaround times for the same test in two different laborato-
ries; in this case, the categorical variable is the laboratory and the numerical variable is turnaround 
time.

Step 1. State the null hypothesis, which is that there exists no real difference between the two 
means (i.e., no difference between the turnaround times).

H0 :  x1 = x2
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Step 2. Calculate the t value, which compares the difference that was actually observed between 
the means with the difference that would have been expected for randomly selected specimens. The 
equation is already programmed into calculators and spreadsheet software.

t =
x1 - x2

S§ a
n1

i = 1
(xi - x1)2 + a

n2

j = 1
(xj - x2)2

n1 + n2 - 2
¥ ¢ 1

n1
+

1
n2

≤
where i refers to the ith value in data set #1 and j to the jth in data set #2.

This formula assumes that the variances of the two groups are equal. To decide whether a given data 
set meets this criterion, employ the F test. Compare the calculated F value with the critical value. 
If the F value is less than the critical value, consider the variances equal. If the F value exceeds the 
critical value, consider the two variances to be different and use the t test for unequal variances (also 
known as the “Welch test”):

t =
x1 - x2B s1

2

n1
+

s2
2

n2

where

s1
2 =

a
n1

i = 1
(xi - x1)2

n1 - 1

and

s2
2 =

a
n2

j = 1
(xj - x2)2

n2 - 1

As the difference between the two means increases, so does the probability that they are significantly 
different (Figure 8-11A	n). Furthermore, a smaller variability raises the likelihood that the differ-
ence is significant (Figure 8-11B), whereas a larger variability can nearly overwhelm a difference 
between the means and erase our confidence that the apparent difference is real (Figure 8-11C). So, 
when the difference between two means is real, the observed difference between the means is greater  
than the expected difference. This, in turn, makes the numerator larger than the denominator and 
pushes the ratio up, which is the t value.
Step 3. Choose a p level and compare your calculated t value with the critical value. If the cal-
culated t value is more extreme than the critical value, then the difference between the means is 
statistically significant. If not, then the difference is statistically nonsignificant.

If Student’s t test (Equation 12) was used, then the number of degrees of freedom is the total 
number of data entries minus 2:

d.f. = n1 + n2 - 2

However, if the unequal-variances t test (Equation 13) was used, then the number of degrees of 
freedom is rather complex to compute. This is another reason to let a computer carry out the t test.

 Equation 12

 Equation 13
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d.f. =
¢ s1

2

n1
+

s2
2

n2
≤2d ¢ s1

2

n1
≤2

n1 - 1
+

¢ s2
2

n2
≤2

n2 - 1

t
Round the result down to the nearest integer before consulting a t table.

Let us consider the example mentioned above: a comparison of the turnaround times for the same 
test performed in two different laboratories.

For our data in the table above, the t statistic is 2.781 by Equation 12 (built into a spreadsheet), and there 
are 11 degrees of freedom (7 + 6 - 2). The corresponding critical values in the t table are 3.106 at 
p = 0.01 and 2.201 at p = 0.05. Therefore, the difference between the means in our data is statistically 
significant at p = 0.05 but statistically nonsignificant at p = 0.01.

n	 Figure 8-11 Graphical representation of the t value in Equation 13.  
(a) Numerator is the difference between the two means. Denominator contains the 
sum of the variabilities of the two groups. (B) Smaller variability increases likelihood 
that observed difference between means is real. (C) Larger variability decreases 
likelihood that observed difference between means is real.

Standard error of the difference 
Difference between the means=t = x1−x2

s1
2

n1 n2

s2
2

+

A

B C

Turnaround Time (min)

laboratory Q laboratory R

106 100

107 102

108 103

111  97

103  94

101  93

 98

saMple Mean 105  98
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We interpret significance at p = 0.05 this way: the difference we observed between the two mean 
turnaround times would have occurred five out of every hundred times we ran the experiment, even if, 
on average, the two laboratories returned results in the same amount of time. Significance did not, however, 
extend to a p of 0.01; thus, we cannot conclude that the difference would have occurred only one out of 
every hundred times.

Technically, the t test presented here is two-tailed because it tests for a difference without assuming 
which mean is greater than the other. Although the table summarizing the critical values for the two-
tailed t value lists only positive numbers, each value represents both the positive and negative cutoffs for 
statistical significance. Therefore, the null hypothesis is rejected whenever t is more extreme than either 
cutoff, that is, whenever t is greater than the positive critical value or more negative than (less than) the 
negative critical value.

The Paired t Test
One of the most important tasks facing the clinical laboratory is the comparison of two instruments or 
methods for a given analyte. In such a comparison, each of the specimens is tested on one instrument 
and then on the other. This specimen pairing creates a one-to-one correspondence between the two 
instruments for every individual specimen.

Step 1. State the null hypothesis, which is that there exists no real difference between the two 
means (i.e., no difference between the two instruments).

H0 :  x1 = x2

Step 2. Carry out the necessary preliminary calculations and then compute the t statistic

t =
DB s2

n

where D is the mean of the differences, s2 is the variance of the differences, and n is the number of 
differences.

 Equation 14

Value of p

0.10 0.05 0.01

degrees of Freedom  1 6.314 12.706 63.657

 2 2.920  4.303  9.925

 3 2.353  3.182  5.841

 4 2.132  2.776  4.604

 5 2.015  2.571  4.032

 6 1.943  2.447  3.707

 7 1.895  2.365  3.499

 8 1.860  2.306  3.355

 9 1.833  2.262  3.250

10 1.812  2.228  3.169

11 1.796  2.201  3.106

15 1.753  2.131  2.947

25 1.708  2.060  2.787

50 1.676  2.009  2.678

100 1.660  1.984  2.626

Critical Values for the t Value (two-tailed)
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 Equation 14

Step 3. Compare the calculated t value with the critical value.

For example, suppose we are comparing two instruments for quantifying substance M in whole 
blood, and we want to know whether their results differ statistically:

Concentration of substance  
M (ng/ml)

specimen instrument A instrument B A - B B - A

 1 4.60 4.82 -0.22 0.22

 2 4.53 4.62 -0.09 0.09

 3 4.47 4.70 -0.23 0.23

 4 4.55 4.61 -0.06 0.06

 5 4.72 4.79 -0.07 0.07

 6 4.51 4.78 -0.27 0.27

 7 4.63 4.70 -0.07 0.07

 8 4.61 4.66 -0.05 0.05

 9 4.49 4.69 -0.20 0.20

10 4.66 4.73 -0.07 0.07

MEAN -0.133 0.133

VARIANCE 0.007357 0.007357

t-STATISTIC 
(paired, Eq. 14)

-4.904 4.904

The number of degrees of freedom for this test is n - 1. Equation 14 returns a t value of -4.904 
or 4.904, depending on whether B is subtracted from A or A from B. At 9 degrees of freedom and 
a p value of 0.01, the value of -4.904 is more negative than the critical value of -3.250. Therefore, 
we reject the null hypothesis that there is no difference between the results from instruments A and 
B and conclude that the observed difference between the two means is statistically significant. In 
other words, the results coming from instrument A probably differ truly from those coming from 
instrument B.

The Chi-Square Test
The chi-square (χ2)  test is used on qualitative or categorical data, which, as stated above for Student’s  
t test, are non-numerical in nature. For example, suppose there is concern that a new drug, Q, may interfere 
in the method our laboratory uses to detect the presence of antibodies against hepatitis C in serum. To 
answer this question, we gather relevant data on 97 patients and summarize them in a contingency table 
(Table 8-3	H), which in general is a tabular summary of categorical data.

response Variable (presence of antibodies 
against hepatitis C)

positive equivocal negative Total

explanatory 
Variable

Taking Drug Q 8

(9.68)

3

(4.85)

36

(32.5)

47

Not Taking Drug Q 12

(10.3)

7

(5.15)

31

(34.5)

50

TOTAL 20 10 67 97

Note: Each orange cell of the table shows the observed number of specimens and, in parentheses, the expected 
number of specimens (calculated in step 2).

H	 TaBle 8-3  Effect of Drug Q on Qualitative Test for Antibodies Against  
Hepatitis C in Serum
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Step 1. State the null hypothesis.

H0: The observed counts do not differ from the expected counts.
Step 2. Compute the expected frequency in each cell on the assumption that the null hypothesis is 
true, and then calculate the χ2 statistic. If there is no relationship between the drug and the hepatitis 
test result, then it is immaterial whether a given specimen came from a patient taking the drug or 
from a patient not taking the drug: all 20 “positive” specimens would have tested “positive” regardless 
of the patients from whom they were drawn. There could just as easily have been 10 specimens from 
the group taking the drug and 10 from the group not taking the drug. Thus, if the null hypothesis is 
true, the expected frequency of   “positive” results is 0.206:

expected frequency of “positive” results =
number of observed “positive” results

number of specimens tested

0.206 positives per specimen =
20 positives

97 specimens
= 20.6%

This means that, if the drug has no effect on our hepatitis assay, then about 21% (rounded up from 
20.6%) of all results should be “positive,” whether or not the patients are taking the drug.

Therefore, if the null hypothesis is true, we expect the number of patients who test “positive” 
while taking the drug to be about 10:

expected number of
patients who test

“positive” while on
drug Q

  =  
expected frequency of

“positive” results
  *  

number of patients
taking drug Q

9.68 expected positives = 0.206 positives * 47 specimens
               per specimen

Likewise, the expected number of patients who test “positive” while not taking the drug is also about 
10 (0.206 * 50 = 10.3). The other expected numbers in the table are calculated similarly.

Next, calculate the χ2  statistic.

χ2 = a (observed result - expected result)2

expected result

What this equation tells us is that, when the drug does not affect the hepatitis test, that is, when 
there is no relationship between the explanatory and response variables, (a) every observed result 
is the same as its expected result, (b) each difference in the numerator is zero, (c) χ2  is zero, and (d) 
we do not reject H0. However, if the drug does affect the hepatitis test, then the differences between 
observed and expected results widen, and the value of χ2  increases until it exceeds the critical value, 
at which point we do reject H0.

By Equation 15, the value of χ2  for our hypothetical data in Table 8-3 is

χ2 = 2.674

Step 3. For any contingency table, the number of degrees of freedom is

d.f. = (number of rows - 1)(number of columns - 1)

There are many explanations of this formula in printed and electronic resources. As for Table 8-3, 
then, the number of degrees of freedom is

d.f. = (2 - 1)(3 - 1) = 2

To determine whether our observed results differ significantly from the expected results, we com-
pare our value of χ2  with the critical value in the following table. For a p value of 0.05, which is the cus-
tomary threshold for significance, and with 2 degrees of freedom, the critical value of χ2  is 5.991. Because 

 Equation 15
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Critical Values for the χ2 Statistic

our value of 2.674 is less than the critical value, we do not reject the null hypothesis, which says that there 
is no relationship between the drug and our test results. Instead, we let the null hypothesis stand.

antibodies against hepatitis C

positive negative ToTal

Time after 
exposure

10 weeks  35 65 100

15 weeks  71 29 100

ToTal 106 94 200

When the χ2  statistic exceeds the critical value, we know only that somewhere in the table a count 
is significantly higher than expected. Visual inspection is then necessary to identify it.

The χ2  test has several implicit unique requirements; if any of them is not met, the test is invalid.

	 •	 Each subject may contribute data to only one cell in the contingency table. For example, consider 
an experiment, summarized in the table below, in which each of 100 patients is tested for antibodies 
against hepatitis C at 10 and 15 weeks after suspected exposure.

  This χ2  test is invalid because each patient is present in more than one cell. The total number of 
counts in the table is 200 even though there are only 100 patients. The χ2  test cannot be used for 
correlated data (e.g., before/after treatment, paired samples).

	 •	 Each number in the contingency table must be a raw count (not a percentage).
	 •	 The sample size must be adequate. There is no universally accepted minimum, but many researchers 

insist on at least 20.
	 •	 The cell size must be adequate. A common minimum is five samples in every cell in a 2 * 2 table. 

In larger tables, 80% of the cells should each have at least five samples.
	 •	 The total number of observed counts must equal the total number of expected counts.

Caveats

 1. Significance thresholds are arbitrary. The bifurcation of results into those that are significant or 
nonsignificant is artificial. Therefore, the value of p should be interpreted in view of all the other 
evidence and should never be regarded as the final arbiter. Even when p is 0.05 and the actual results 
have only a 5% probability of being observed when the null hypothesis is true, they will still come 

Value of p

0.10 0.05 0.01

degrees of Freedom   1   2.706   3.841   6.635

  2   4.605   5.991   9.210

  3   6.251   7.815  11.345

  4   7.779   9.488  13.277

  5   9.236  11.070  15.086

  6  10.645  12.592  16.812

  7  12.017  14.067  18.475

  8  13.362  15.507  20.090

  9  14.684  16.919  21.666

 10  15.987  18.307  23.209

 25  34.382  37.652  44.314

 50  63.167  67.505  76.154

100 118.498 124.342 135.807
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up one in 20 times (5 in 100 times). So, if H0 is indeed true and we choose to reject it whenever 
p = 0.05, then we would be wrong about every 20th time we ran the experiment. Clearly, a lower 
p value such as 0.005 or 0.001 is much more convincing. Rejecting the null hypothesis is a gamble: 
when p = 0.05, one is betting that he or she has not stumbled upon that one time in 20 that repre-
sents mere coincidence.

 2. The p value is ambiguous. As the value of n goes up (as sample size increases), the value of p goes 
down. Conversely, as n goes down, p goes up. This means that almost any difference between two 
groups will become statistically significant if the sample size increases far enough. Therefore, a sig-
nificant result might be due to a real effect or it might be due to an increase in the power of the test 
simply because n is very large.

 3. Statistical significance is not clinical significance. The fact that the difference between two 
results is statistically significant does not make the difference clinically meaningful. For example, 
consider two laboratory instruments used for quantifying a protein in plasma. Comparison 
studies reveal that instrument #1 returns a concentration of 881 ng/dL, whereas instrument #2 
gives 894 ng/dL, with p 6 0.005. The difference can be considered statistically significant, but 
it is only 13 ng/dL, or 1.5% of the mean (887.5 ng/dL). The question of whether such a small 
difference would have any clinical significance must be taken into account when the laboratory 
is selecting one instrument over the other, especially if cost, space, or some other factor is a 
consideration.

 4. Nonrejection of the null hypothesis does not mean it is true. Remember, H0 states that there is no 
difference between the results. Strictly speaking, we can never accept the null hypothesis or prove it 
true; we can only fail to reject it. Although the distinction may seem petty, it reminds us of the need 
to keep significance testing in perspective. Even if the difference between two results proves to be 
statistically nonsignificant, it is risky to conclude that there is no difference between them.

Summary
  where n = number of values in the data set. The mean is also 

the unique value with which every observed value in the data 
set can be replaced without altering the total of those values.

 5. The median is the midpoint of the data set. To locate 
the midpoint, all the entries in the data set, including all 
repeats, are arranged in ascending or descending order. If 
the number of entries in the data set is odd, the median is 
the middle entry. If the number is even, the median is the 
calculated value halfway between the two middle entries.

 6. The mode is the value that occurs in the data set most 
often. Sometimes a data set has more than one mode. 
Because the mode may not be near the center of the data, 
it is not necessarily a measure of central tendency.

 7. A normal distribution is symmetrical. Therefore, its mean, 
median, and mode are all equal. The standard deviation, 
which has the same units as the x-axis variable, is a mea-
sure of the average distance between the data points and 
the mean. In a normal distribution, 68% of the values lie 
within a distance of one standard deviation from the mean 
in both directions; 95% lie within two standard deviations 
and 99.7% within three.

 8. The standard deviation is the most commonly used measure 
of dispersion. It is defined as the square root of the variance:

 1. There are two paramount questions arising from a set of 
numerical data.

 •	  What is a typical value, that is, what is the central  
tendency or middle of the data set?

 •	  How typical is a typical value or how far from the center 
do the data lie?

 2. Accuracy is the degree of correctness of a laboratory 
result, whereas precision is the degree of reproducibility 
in repeated measurements. Accuracy refers to how close 
a laboratory value is to the true value, whereas preci-
sion refers to how tightly clustered several replicates are, 
whether or not they are close to the true value.

 3. The three most-common measures of central tendency 
are the mean, median, and mode. The mean is more 
sensitive to extreme values (outliers) than is the median 
or mode.

 4. The mean, usually represented as x, can be considered the 
data set’s center of gravity. It is calculated by adding all 
the data values together and dividing the sum by the total 
number of values in the data set:

x =
x1 + x2 + x3 + c + xn

n
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variance = s2 =
a
n

i = 1
(xi - x)2

n - 1

standard deviation = s = H an
i = 1

(xi - x)2

n - 1

  where n is the number of values in the data set.

 9. The coefficient of variation relates the standard deviation 
directly to the mean.

CV =
s
x

* 100%

  It standardizes the standard deviation and offers a measure 
of precision.

 10. Linear regression is a technique that fits a straight line to a 
set of data points. One variable is independent (x) and the 
other is dependent (y). In the clinical laboratory, straight 
lines are used most often to generate standard curves and 
to compare methods.

 11. Regression proceeds by finding a pair of values for the 
slope and y-intercept that define a line as close as possible 
to the data points. There are standard equations for calcu-
lating the slope and y-intercept, and they are integrated 
into computer algorithms.

 12. Technically, a regression line is valid only for interpolat-
ing the dependent variable from the independent vari-
able. However, interpolating in the opposite direction may 
be acceptable if the regression line is close to the data 
points.

 13. Extrapolation is risky because the relationship between the 
variables is unknown outside the data range.

 14. Correlation is a measure of how tightly the variables are 
coupled to each other (how strong their tendency is to 
change together). The correlation coefficient (r) ranges in 
value from -1 to +1. When r = +1, the correlation is per-
fect, the two variables move in the same direction, and 
all the data points lie on the line. When r = -1, the cor-
relation is again perfect, and all the points lie on the line, 
but the two variables move in opposite directions. When 
r = 0, there is no linear relationship between the variables. 
Because r can be misleading, one should always look at the 
plot before drawing any conclusions.

 15. Technically, the correlation coefficient should be calcu-
lated only when both variables are measured. It is inap-
propriate when one variable is measured and the other 
is controlled, as for standard curves, although it can nev-
ertheless give a coarse estimate of goodness-of-fit for a 
regression line.

 16. The coefficient of determination (r2) is the proportion of the 
total variation in y explained by the variation in x. It is also 
the proportional reduction in error that comes from using 
the regression line to predict y over merely citing the mean 
of the y values.

 17. The basic tools for judging how well a regression line fits 
the data are (a) visual inspection, which serves to verify 
the linearity of the points, (b) the root-mean-squared error, 
which represents the average deviation of the y-values 
from the line, (c) the standard error of the slope or inter-
cept, which functions as the standard deviation and which 
depends on the sample size, and (d) the confidence interval 
of the slope or intercept, which is a range that contains the 
true value a large proportion of the time.

 18. Generally, linear transformations of nonlinear data are more 
useful for displaying data than they are for analyzing data 
because computers can execute nonlinear regression quickly.

 19. Nonlinear regression employs the same strategy as linear 
regression, except that it adjusts values iteratively until the 
curve is as close as possible to the data points.

 20. Data weighting equalizes the influence of all data points on 
the calculation of a regression line or curve.

 21. Significance testing helps determine whether an apparent 
difference between data sets is a true difference.

 22. There are three steps to each significance test presented in 
this chapter:
(1)   Define the null hypothesis, which states that there is no 

difference between the results in question.
(2)   Summarize the data, execute any preliminary calcula-

tions, and then compute the test statistic.
(3)   Assuming the null hypothesis to be true, use the test 

statistic from step 2 to determine the probability (p) 
of observing, by coincidence alone, results more ex-
treme than those that were actually observed.

 23. A p value of 0.05 is the cutoff used most often, though 
certainly not always, especially in biological sciences.

 24. The F test compares the precisions of two different instru-
ments, techniques, or methods.

 25. The F statistic is calculated with this formula:

F =
larger s2

smaller s2

 26. The calculated F value is compared with the critical value 
at a selected p and number of degrees of freedom. If F 
exceeds the critical value, the difference is statistically 
significant.

 27. A t test compares the means of two data sets when one 
variable is categorical (non-numerical) and the other is 
numerical.

 28. Student’s t test assumes equality in the variances of the 
two data sets, using the following formula to calculate the 
t value. The number of degrees of freedom is n1 + n2 - 2.

t =
x1 - x2

S§ a
n1

i = 1
(xi - x1)2 + a

n2

j = 1
(xj - x2)2

n1 + n2 - 2
¥ ¢ 1

n1
+

1
n2

≤
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 34. The formula for the paired t value is this:

t =
DAs2

n

  where D is the mean of the differences, s2 is the variance 
of the differences, and n is the number of differences.

 35. The χ2 test is used on qualitative or categorical data. It 
compares the observed results with the expected results.

 36. In a χ2 test, we summarize the data in a contingency table 
and then calculate the expected frequencies.

 37. We use this formula to calculate the χ2 statistic:

χ2 = a (observed result - expected result)2

expected result

 38. In a χ2 test, the number of degrees of freedom is

d.f. = (number of rows - 1)(number of columns - 1)

 39. The calculated χ2 value is compared with the critical value at a 
selected p and number of degrees of freedom. If χ2 is greater 
than the critical value, the difference between the observed 
results and expected results is statistically significant.

 40. Though very helpful in decision-making, significance tests do 
not substitute for sound scientific judgment. There are at least 
four important caveats pertaining to significance testing:

(1)  Significance thresholds are arbitrary.
(2)  The p value is ambiguous.
(3)  Statistical significance is not practical significance.
(4)   Nonrejection of the null hypothesis does not mean it 

is true.

 29. If the variances of the two data sets are not equal, use this 
formula to calculate the t value:

t =
x1 - x2Cs1

2

n1
+

s2
2

n2

 30. In the unequal-variances t test, use this formula to calculate 
the number of degrees of freedom:

d.f. =
¢ s1

2

n1
+

s2
2

n2
≤2d ¢ s1

2

n1
≤2

n1 - 1
+

¢ s2
2

n2
≤2

n2 - 1

t
 31. The calculated t value is compared with the critical value at 

a selected p and number of degrees of freedom. If t is more 
extreme than the critical value, the difference is statistically 
significant.

 32. In the table of critical values for the two-tailed t value, 
each value represents both the positive and negative 
cutoffs for statistical significance. The null hypothesis is 
rejected whenever t is greater than the positive critical 
value or more negative than (less than) the negative criti-
cal value.

 33. The paired t test is used to compare results for the same 
specimens under two different conditions. In the clinical 
laboratory, this is usually a comparison on two different 
instruments. Such specimen pairing creates a one-to-one 
correspondence between the two instruments for every 
individual specimen.

Practice Problems
 1. (LO 3, 4) Consider the following three data sets. For each 

set, calculate the mean and median. What do these results 
say about resistance to outliers?

 (1)  100, 120, 140, 160, 180, 200

 (2)  100, 120, 140, 160, 180, 2000

 (3)  10, 120, 140, 160, 180, 200

 2. (LO 4) Determine the mean, median, and mode for each of 
the following data sets.

 (1)  2.3   2.6   1.9   3.5   2.6   2.0

   2.8   2.5   2.6   2.2   2.4

 (2)  101  119  106  108  107  113

   103  107  109  106  106

 (3)  44.8  44.1  44.6  33.9  45.1  44.0

   44.8  44.0  44.1  44.8  43.9

 3. (LO 4, 6) Calculate the mean and standard deviation 
(n - 1) for each of the following sets of numbers.

 (a) 6, 6, 9, 4, 6, 4, 3, 2, 5, 7, 8, 6

 (b) 88.3, 85.6, 90.2, 99.1, 89.7, 94.0, 89.4, 96.1, 93.5, 95.7

 (c) 0.033, 0.046, 0.022, 0.039, 0.031, 0.028, 0.026, 0.040, 
0.030, 0.037

 (d) 9.91 * 105, 9.86 * 105, 1.01 * 106, 9.80 * 105, 
9.97  * 105, 1.12 * 106, 9.77 * 105, 9.84 * 105, 
9.82 * 105

 (e) 1022, 4375, 2998, 893, 2245, 1836, 3661, 2718, 970, 
2056

 4. (LO 3, 4) Using the weights-on-a-beam analogy, determine 
whether each of the following sets of numbers is balanced 
on its median, and if not, whether the set tips to the left or 
the right.

 (a) 1, 2, 3, 4, 5, 6, 7, 8, 9

 (b) 1, 5, 5, 6, 7, 8, 9, 9, 9
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 (c) 100, 105, 105, 105, 108, 108, 108, 125, 160

 (d) 0.45, 0.61, 0.64, 0.67, 0.81, 0.84

 (e) 2.3 * 104, 6.6 * 104, 9.2 * 104, 1.5 * 105, 1.9 * 105,
3.4 * 105

 5. (LO 6) Consider the following five data summaries. In the 
third column appears one of the data values from the data 
set. Calculate the number of standard deviations at which 
the single data value lies from the mean.

 9. (LO 11) For the data sets in problem 8 above, predict the 
values of x from the following values of y.

 (a) 22.6  (b) 34.1  (c) 1.6  (d) 7119  (e) 333  (f) 50.2

 10. (LO 8, 9, 11, 12) The following data represent a compari-
son of two methods, P and Q, for quantifying potassium 
in serum. Twelve randomly selected patient samples were 
tested by each method. Each datum is a concentration in 
units of mmol/L.

data set Mean t SD one of the data Values

A 554 { 26 580

B 0.033 { 0.005 0.039

C 13.6 { 1.5 12.1

D 647 { 31 699

E 8.22 { 0.57 9.79

F 0.336 { 0.045 0.240

 6. (LO 5, 6) If a normal distribution has a mean of 50 and 
a standard deviation of 10, what percentage of the data 
values fall between 30 and 70?

 7. (LO 1, 2, 7) There are three 200@μL mechanical pipets in 
your laboratory that you and your colleagues use rou-
tinely to prepare reagents and calibrators. In the regular 
quality assurance procedure, you test these pipets for 
accuracy and precision. You dispense deionized water 
20 times from each pipet and summarize the results. 
Pipet A gives 202.4 { 2.2 μL (mean { SD), pipet B 
gives 197.2 { 3.0 μL, and pipet C gives 192.4 { 1.6 μL. 
Which pipet is the most accurate? Which is the most 
precise?

 8. (LO 9) For each of the following sets of data, write the 
least-squares linear regression equation in the form 
y = mx + b and calculate the correlation coefficient.

 (a)  

 (b)  

 (c)  

 (d) 

 (e) 

 (f) 

x 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

y 44 37 35 29 31 25 22 15 10 7

x 1 2  3  4  5  6  7  8  9 10

y 8 7 12 14 15 17 18 22 23 26

x 0.06 0.11 0.14 0.23 0.26 0.30 0.36 0.42 0.47 0.51

y 810 2608 1746 3122 4565 3901 5539 6782 6413 7990

x 9.8 19.6 31.2 42.8 49.1 60.5 69.6 83.2 91.3 96.7

y 0.2 0.4 0.8 0.9 1.4 1.7 2.2 2.4 2.5 2.9

x 10.0 10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8

y 69 49 59 40 31 37 17 15 14 3

x 102 209 288 389 517 620 731 798 866 1010

y  91 180 277 364 476 589 690 765 843  969

patient

1 2 3 4 5 6 7 8 9 10 11 12

P 2.2 2.4 2.9 3.4 3.9 4.3 4.7 4.8 5.0 5.1 6.3 6.9

Q 2.4 2.5 3.1 3.6 4.1 4.2 4.7 4.7 4.9 5.0 6.2 7.0

 (a) Treating P as the independent variable, calculate the 
slope, y-intercept, and r2 of the regression line. Predict 
the results for method Q when the results for method P 
are 5.5 and 2.5.

 (b) Treating Q as the independent variable, calculate the 
slope, y-intercept, and r2 of the regression line. Predict 
the results for method P when the results for method Q 
are 5.5 and 2.5.

 (c) At which value of the independent variable (5.5 or 2.5) 
do the two regression lines agree more closely? Explain.

 11. (LO 8, 9, 11, 12) The following data are intended for con-
struction of a standard curve for analyte Z. The concentra-
tion is in units of mg/dL.

conc. 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

abs. 0.060 0.121 0.173 0.218 0.266 0.338 0.368 0.444 0.516 0.583

 (a) Treating concentration as the independent variable, cal-
culate the slope, y-intercept, and r2 of the regression 
line. Predict the concentration when the absorbance is 
0.300 and 0.547.

 (b) Treating absorbance as the independent variable, calcu-
late the slope, y-intercept, and r2 of the regression line. 
Predict the concentration when the absorbance is 0.300 
and 0.547.

 (c) Might either regression line be suitable for predicting 
concentration from absorbance? Explain.

 12. (LO 8, 13, 15) Your laboratory is comparing serum and 
plasma results in the assays for analytes A and B. The data 
fit straight lines, and the statistics are tabulated below. 
Which assay shows stronger agreement between the 
results for serum and plasma? Explain.

analyte regression equation r n

A y = 1.012x + 0.882 0.961 38

B y = 2.647x + 0.014 0.999 44



148            Chapter 8   •   StatiStiCS

 13. (LO 8, 17) Substance V is suspected of interfering in 
the assay for analyte M. An experiment is conducted in 
which the measured concentration of M (μg/dL) is plot-
ted as a function of the known concentration of V (μg/dL). 
The data fit a straight line, the regression equation is 
y = -8.23x + 66.52, and n = 32.

 (a) If the standard error of the slope is 0.041, what is the 
99% confidence interval for the slope?

 (b) What does this confidence interval for the slope say 
about the interference of V in the assay for M?

 (c) If the standard error of the intercept is 2.92, what is the 
90% confidence interval for the y-intercept?

 14. (LO 8, 9, 11, 17) Your laboratory’s assay for a certain endo-
crine marker involves constructing a standard curve at six 
known concentrations (pg/mL). The response variable is 
absorbance. Shown below are the data from one run of 
this assay.

 (a) Calculate the least-squares linear regression equation 
and the correlation coefficient.

 (b) What concentrations does the regression line predict for 
absorbances of 0.130, 0.330, and 0.530?

 (c) Plot absorbance against concentration.

 (d) Comment on the suitability of the line for use as a stan-
dard curve.

 16. (LO 8, 9) The time required for a population of bacteria to 
double (d) can be calculated from this equation:

ci * 2t/d = ct

  where ci is the initial cell number, t is the elapsed time, 
d is the time required for one doubling, and ct is the cell 
number at time t. Rearranging this equation to make t the 
independent variable gives

log ct - log ci =
log 2

d
 t

log ct - log ci =
0.301

d
 t

log ct =
0.301

d
 t + log ci

  By means of linear regression, use the following data for 
bacterial cell growth to determine the doubling time. (a) Plot the data directly.

 (b) Plot the logarithm of absorbance against the logarithm 
of the concentration.

 (c) How is the log-log plot superior to the direct plot? Cal-
culate the regression equation for the log-log plot. What 
concentrations correspond to absorbances of 0.844 and 
0.107?

 15. (LO 8, 9, 11, 12, 17) Consider the following data, which a 
technologist gathered to construct a standard curve for a 
heavy metal in serum.

elapsed Time (min) Cell number

  0   19

 11   32

 26   66

 43  122

 55  257

 72  435

 88  822

131 3343

154 6934

Concentration (pg/ml) absorbance

  10 0.040

  30 0.092

 100 0.303

 250 0.697

 500 1.334

1000 2.480

Concentration (�g/dl) absorbance

1.0 0.06

2.0 0.08

3.0 0.130

4.0 0.220

5.0 0.330

6.0 0.440

7.0 0.530

8.0 0.580

9.0 0.600
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 23. (LO 19, 22, 23) For each of the following contingency 
tables, state the null hypothesis and then calculate the 
χ2 statistic. Decide whether the null hypothesis may be 
rejected.

 (a)  

 (b) 

 17. (LO 13) Match the scatterplots below with their correlation 
coefficients.

0.997, 0.914, 0.071, -0.980, -0.541

 18. (LO 23) Each row in the following table represents a 
 Student’s t test. For each test, determine whether the 
 difference between the means is statistically significant at 
p = 0.05.

A

D E

B C

t value n1 n 2 x1 x2

(a) 1.933  5  5 63.1 64.9

(b) 2.307 13 14 0.18 0.22

(c) 1.615  4  4 2.04 3.12

(d) 2.009 10  7 167 148

(e) 4.184 26 24 0.0278 0.0189

instrument #1 instrument #2
is difference 
significant?

Variance n Variance n F (yes / no)

(a) 0.0446 21 0.0793 21

(b) 8.094  8 10.772 11

(c) 46.812 11 23.004 11

(d) 0.3755 61 0.4217 61

(e) 16.17 21 15.112 21

 19. (LO 23) For a set of data, there are six specimens in one 
group and seven in the other. Student’s t test returns a t 
value of 2.445. Is there a significant difference between the 
means of the two groups at p = 0.05? At p = 0.01?

 20. (LO 20, 22, 23, 24) Is Student’s t test appropriate for com-
paring the means of the following two groups of data? 
Explain.

group N Variance

1 21 13.34

2 21 14.78

 21. (LO 22, 23) Five instrument comparisons appear in the 
table below. In each comparison, different samples were 
run on two instruments. Calculate the F value for each 
comparison and determine whether precision differs sig-
nificantly between the two instruments (p = 0.05). All dis-
tributions are normal.

 22. (LO 19, 22, 23) Consider the following contingency table. 
State the null hypothesis and then calculate the χ2 statistic. 
Decide whether we may reject the null hypothesis.

response Variable ToTal

x y Z

explanatory 
Variable

a 12 26 83

B 18 34 91

C 15 45 76

ToTal

442 108 627

299 451 820

34 67 90

29 72 94

38 69 86
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 (c) 

 24. (LO 23) Each row in the following table represents a t test 
for equal variances. For each test, determine whether the 
difference between the means is statistically significant at 
p = 0.01.

 (b) If the null hypothesis is true, the results have a 5% 
probability of being as extreme as they were in this 
experiment.

 (c) The difference observed between the means is greater 
than would be observed if p were 0.01.

 26. (LO 21) In a study of a new antihypertensive agent, one 
group of patients is given the drug and another group 
is given a placebo. A paired t test is carried out on the 
two groups, revealing a statistically significant difference 
between the means at p = 0.01. Is the following state-
ment true?

  “If the drug has no effect, then the probability is 1% that 
random sampling by itself would have produced an effect 
as large as that seen in this experiment.”

 27. (LO 21, 23) Consider these results of a t test: 
t = 2.046, d.f. = 10. Is the following conclusion true?

  “The difference was statistically significant (p 6 0.10).”

 28. (LO 21, 23) Consider these results of a t test: 
t = 2.880, d.f. = 7. Is the following conclusion true?

  “There was a statistically significant difference between 
the means (p 6 0.05).”

Contextual Problems
 1. (LO 1, 6) Your LIS (laboratory information system) has gone 

down for several hours. Because calculations must be per-
formed manually in the interim, you yourself have to ascer-
tain whether the result for your control solution is within 
two standard deviations of the mean, the limit that your 
manager has set to permit the release of patient results. 
Over the past month, 16 values (in “ng/dL”) for the control 
solution have been obtained in the test you are running, 
including yours from today, which is 40.4:

  55.1, 56.4, 61.5, 43.7, 52.0, 55.2, 59.0, 70.1, 53.2, 50.9, 
53.3, 48.6, 49.7, 66.0, 52.2, 40.4

 Can you begin running patient samples and releasing 
results?

 2. (LO 1, 6) Your laboratory’s control solution for the car-
diac marker troponin-T is prepared by adding 2.00 mL of 
deionized water directly to a manufacturer-supplied bottle 
containing the preweighed dehydrated material. You and 
your colleagues have been using this lot of control solution 
for the last 30 days, having gathered 90 data values; the 
concentration is 2.94 { 0.03 ng/mL (mean { SD). Your 
laboratory policy allows for running patient samples and 
releasing results if the control value falls within 2s of the 
mean.

 (a) Suppose someone prepares a bottle of fresh control 
solution today, but mistakenly adds only 1.90 mL of 
water, rather than 2.00. Is this pipetting error negligible? 
Explain.

 (b) Suppose that a single drop of water from the pipet has a 
volume of 0.05 mL. If the technologist dispenses 2.00 mL  

of water into the bottle of dehydrated material but 
inadvertently allows one extra drop of water to fall in, 
will the test result for the control solution be affected 
appreciably? Explain.

 3. (LO 1, 2, 3, 5) Your laboratory uses a manual method 
for quantifying analyte Z in plasma. It requires pipetting 
50.0 μL of sample into 2.0 mL of reagent. For this purpose, 
there are two 50@μL pipets available on the bench top: one 
calibrated correctly to deliver 50.0 { 1.0 μL (mean { SD) 
and the other accidentally miscalibrated such that it actu-
ally delivers 55.0 { 1.0 μL. Each technologist randomly 
chooses a pipet whenever he or she runs the assay. A cor-
rectly calibrated pipet gives a mean result for analyte Z of 
100 ng per dL of plasma.

 (a) Over the course of several weeks, you and your col-
leagues run the assay on a control solution, generating 
80 results. One day, your supervisor plots the results as 
a distribution curve and becomes alarmed. How does 
the curve look? Explain.

 (b) If each pipet were more precise, how would the distribu-
tion curve change?

 (c) If the technologists had used the correctly calibrated 
pipet more often than the miscalibrated one, how would 
the distribution curve have differed?

 4. (LO 1, 5) If the leukocyte count is 6240 {
  480 cells/μL (mean { standard deviation) for the popula-
tion of city X, how many patients in a random sample of 
100 would have a count below 5760 cells/μL? (Assume the 
distribution to be normal.)

t value n1 n2 x1 x2

(a) 1.934 48 54 0.846 0.912

(b) 2.735  5  4 2.78 3.26

(c) 4.077  6  7 89 70

(d) 3.406  5  6 13.3 16.2

(e) 1.028 24 28 522 559

101 423 669 87

625 710 472 95

 25. (LO 21) Suppose Student’s t test shows the difference 
between two means to be statistically significant at 
p = 0.05. Decide whether each of the following state-
ments is necessarily true.

 (a) The difference that was observed between the means 
will appear one in 20 times even if there is no real dif-
ference between the two groups.
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Method 1 Method 2

Cholesterol  
Concentration  
(mg/dl), Mean { SD

224 { 4.7 227 { 5.7

 5. (LO 1, 6, 7) Your laboratory manager is considering buying 
one of three competing analyzers. In an effort to evaluate 
their reproducibilities, you run a different patient sample 
on each analyzer for the concentration of total bilirubin. 
From the following data, identify the analyzer with the 
greatest precision.

analyzer Mean (mg/dl) standard deviation (mg/dl)

A 5.4 0.22

B 1.3 0.10

C 12.3 1.1

 6. (LO 1, 6, 7) The following tables present data for an ana-
lytical method, manufactured by company W, for quantify-
ing lead (Pb) in whole blood. The first table shows values 
obtained for the same standard solution taken on 4 con-
secutive days (“day-to-day performance”), whereas the 
second table shows data for nine replicates of the solu-
tion taken in the same run on the same day (“within-run 
performance”).

  Which of the data sets shows greater precision? Offer a 
reasonable explanation.

Replicate 1 2 3 4 5 6 7 8 9

Value (μg/dL) 22 21 22 21 23 21 22 23 21

Within-Run Performance

Date May 1 May 2 May 3 May 4 May 5 May 6 May 7 May 8 May 9

Value (μg/dL) 20 17 19 21 19 22 21 21 18

Day-to-Day Performance

 7. (LO 19, 21, 22) In an assay comparison, you quantified 
cholesterol in a quality-control solution in quadruplicate 
on 4 consecutive days by each of two methods. From the 
following data, use an appropriate significance test to 
decide whether the two methods have different precisions 
at p = 0.05. (Visual inspection of the data reveals a normal 
distribution.)

 8. (LO 19, 21, 22, 24) To solve this problem, use statistical 
software, as is widely available in spreadsheets. Your labo-
ratory is establishing a reference range for substance X in 
the serum of adults. In so doing, it is necessary to check 
for a difference in the average concentration between men 
and women. From the data in the table to the right use 
an appropriate significance test to decide whether the 
concentration of X differs between the sexes. Have the 
software calculate a p value. (Visual inspection of the data 
reveals a normal distribution.)

Concentration of X (pg/ml)

Men Women

5.53 6.02

5.68 6.22

5.21 5.79

6.28 5.98

5.75 6.09

5.48 5.81

6.10 5.97

5.59 5.74

5.44 5.66

5.72 6.11

5.59 6.20
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 12. (LO 19, 21, 22) Statistics software will be very helpful in 
solving this problem. Your laboratory is investigating the 
possible interference of caffeine in the assay for drug G in 
serum. Therefore, you run 16 specimens from randomly 
chosen patients who drink coffee regularly and 16 from 
randomly chosen patients who abstain. All the patients are 
taking drug G at the same prescribed dose. The caffeine 
concentration in each of the 16 serum specimens from the 
coffee drinkers is in the range 0.5–0.9 mg/dL. The serum 
specimens from the abstainers have no detectable caf-
feine. Is there a significant difference between the means 
of the two data sets?

Technologist neutrophils lymphocytes Monocytes

#1 (new) 64 30 6

#2 60 33 7

#3 59 34 7

urine osmolality (mosm/kg)

specimen Current instrument new instrument

 1 446 450
 2 307 299
 3 661 648
 4 537 555
 5 498 494
 6 410 431
 7 372 401
 8 526 540
 9 462 450
10 602 619

Concentration of drug G (ng/ml)

Coffee drinkers abstainers

14.5 9.4
16.9 12.6
15.7 8.3
16.3 10.9
16.5 11.6
14.9 8.7
15.2 10.5
16.0 13.2
17.1 14.3
15.8 10.1
16.6 15.4
14.9 9.7
17.6 12.8
13.4 16.2
16.1 10.4
17.0 11.3

PEARSON

Go to www.myhealthprofessionskit.com <http://www.myhealthprofessionskit.com/> to access the Compan-
ion Website created for this textbook. Use this address to access the Companion Website created for this text-
book. Simply select “Clinical Laboratory Science” from the choice of disciplines. Find this book and log in using 
your username and password to access additional practice problems, answers to the practice and contextual 
problems, additional information, and more.

 9. (LO 19, 20, 21, 22) A diagnostics company hires your lab-
oratory and one other to analyze 10 whole-blood speci-
mens for hemoglobin. Each specimen is divided into two 
aliquots, and each laboratory analyzes one. The company 
wants to know, at the 99% confidence level, whether there 
is a significant difference between the two instruments 
used at the laboratories.

 10. (LO 19, 21, 22) A laboratory manager wants to assess the 
skill of a job applicant to perform a manual differential 
(i.e., to differentiate and count white blood cells on a glass 
slide under a microscope). To carry out this assessment, 
the manager will compare the new technologist’s results 
with those of two seasoned technologists for the same 
specimen. The data appear below. Using an appropriate 
test, determine whether the differences seen among the 
technologists are statistically significant at p = 0.05.

Concentration of hemoglobin (g/dl)

specimen laboratory 1 laboratory 2

1 14.1 14.6

2 16.8 16.9

3 14.9 15.8

4 15.5 15.9

5 13.9 14.4

6 16.7 17.0

7 17.0 17.6

8 15.6 16.2

9 16.1 16.3

10 17.6 18.0

 11. (LO 19, 21, 22) Your laboratory is comparing its recently 
purchased instrument with the current one for determining 
urine osmolality. At a p value of 0.05, ascertain whether 
results from the two instruments differ significantly.

www.myhealthprofessionskit.com
http://www.myhealthprofessionskit.com/
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Learning Objectives
At the end of this chapter, the student should be able to do the following:
 1. Explain and use the relationship between transmittance and absorbance
 2. Explain the proportionality between absorbance and molar absorptivity, 

concentration, and path length
 3. Use Beer’s law properly
 4. Explain when to use a standard curve, the molar absorptivity method, or 

the single-standard method to quantify a chromophore
 5. Explain the strengths and weaknesses of end-point, two-point, and kinetic 

assay modes
 6. Explain the significance of initial rate, KM, and Vmax

 7. Relate the Michaelis-Menten equation to its plot and to its underlying 
model of enzyme catalysis

 8. Explain the strengths and weaknesses of Lineweaver-Burk plots
 9. Estimate KM and Vmax from a Michaelis-Menten plot and from a Lineweaver-

Burk plot
 10. Define the phenomenon of pH buffering
 11. Use Ka and pKa to compare the strengths of acids
 12. Using the Henderson-Hasselbalch equation, calculate the  concentrations 

of an acid and its conjugate base necessary to prepare a buffer at a  
given pH

 13. Use the Henderson-Hasselbalch equation to calculate any one of these 
quantities from the other three: pH, pKa, concentration of acid, concentra-
tion of conjugate base

 14. Properly apply the Henderson-Hasselbalch equation to the CO2@bicarbonate 
buffering system in the blood

 15. Differentiate among respiratory and metabolic acidosis and alkalosis by 
pH, PCO2, and bicarbonate concentration

 16. Calculate the anion gap, with and without potassium
 17. Calculate the osmolarity of a solution from the molarity
 18. Calculate the osmolarity and osmolality of plasma, given the concentra-

tions of sodium, glucose, and BUN
 19. Calculate the osmolality gap
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 20. Calculate the concentration of LDL cholesterol by means of the Friedewald equation
 21. Calculate the creatinine clearance rate, given the required information

Key Terms

I0 I

Detector

absorbance
acid dissociation constant
acidosis
alkalosis
anion gap
Beer-Lambert law
buffered
chromophore
conjugate acid
conjugate base
creatinine clearance
double-reciprocal plot
end-point assay
enzyme
enzyme kinetics
Friedewald equation
glomerular filtration rate
HDL
Henderson-Hasselbalch equation
hypertonic
hypotonic
initial rate
Ka

KM

kinetic assay
lag phase

LDL
linear phase
Lineweaver-Burk plot
lipoprotein
maximal velocity (Vmax)
metabolic acidosis/alkalosis
Michaelis-Menten equation
molar absorptivity
molar absorptivity method
molar extinction coefficient
osmolality
osmolality gap
osmolarity
osmole
osmosis
osmotic pressure
partial pressure
pKa

respiratory acidosis/alkalosis
single-standard method
substrate
substrate-depletion phase
transmittance
two-point assay
VLDL

AnAlyticAl SpectroScopy
Among the most important techniques in the clinical laboratory is analytical spectroscopy. It is based 
on the phenomenon that many chemical substances absorb light of a particular wavelength. A beam of 
light of known intensity (I0) is directed into a solution, and the intensity (I) of the light emerging from 
the solution is then measured.

The fraction of light transmitted (I/I0) is called the transmittance (T):

T =
I
I0

Being a fraction, T ranges in value from 0 to 1. The light that did not pass through the sample was 
absorbed. For example, if T = 0.80, then 80% of the light passing through the sample was transmitted 
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and 20% was absorbed. Although transmittance goes down as concentration goes up, the relationship is 
not linear (Figure 9-1A n).

Therefore, a plot of T against concentration is more difficult to use as a standard curve than is a 
straight line. But the logarithm of T as a function of concentration is a straight line and, as a result, is 
more useful for this purpose (Figure 9-1B). Accordingly,  absorbance (A) is defined as the logarithm 
(base 10) of the transmittance:

A K - log 
I
I0

= - log T

Thus, if T = 0.648, then 64.8% of the light passing through the sample is transmitted and 35.2% is 
absorbed. The absorbance, then, or A, is

A = - log T = - log 0.648 = 0.188

Absorbance depends, logically, on the following three factors.

 • The concentration of the absorbing chemical substance (the chromophore).  At higher concentrations, 
there is more of the chromophore present to absorb the light.

 • The length of the path the light takes passing through the solution.  In a longer container, the light stays 
in contact with the chromophore for a longer period of time and, accordingly, has more opportunity 
to be absorbed.

 • The inherent ability of the chromophore to absorb the light.  This ability is quantified in the molar 
absorptivity or the molar extinction coefficient.  For every chromophore, it is unique and constant 
under a given set of conditions (solvent, wavelength, temperature).

The Beer-Lambert law (also called “Beer’s law”) is the mathematical relationship among absor-
bance and the three factors listed above:

A = � : c : l

 Equation 1

 Equation 1

Absorbance  
(no units)

Molar absorptivity  
(L # mol-1 # cm-1) 

Path length 
(cm)

Concentration 
(mol/L)

Equation 1 is linear. As Figure 9-1B shows, absorbance is directly proportional to concentration (as it is 
to path length), with ϵ  functioning as the proportionality constant.

n Figure 9-1 Panel A: The relationship between transmittance and 
concentration is nonlinear; %T is not proportional to concentration. Panel B: 
Absorbance is directly proportional to concentration.

A%T

Concentration Concentration

A B
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If A has been measured, and if the molar absorptivity and path length are known, then the concen-
tration of a chromophore can be calculated by solving Equation 1 for c:

c =
A

ϵ * l

Suppose, for example, that we have a solution of all-trans-retinol (vitamin A) in isopropyl alcohol and 
we want to ascertain its concentration. In a reference book, we find that retinol in isopropyl alcohol has a 
molar absorptivity of 52,300 L # mol-1 # cm-1. If we measure the absorbance of our solution to be 0.628, 
and if the path length is 1 cm, then the concentration is

 c =
0.628

(52,300 L # mol-1 # cm-1)(1 cm)

 = 0.000012 mol/L

 = 1.2 * 10-5 mol/L

 = 12 μmol/L

Beer’s law is especially useful when the analyte is too unstable to generate a standard curve of absor-
bance versus concentration. In such a case, we calculate the concentration directly from its absorbance 
in the solution. This is the molar absorptivity method.

An alternative to the molar absorptivity method is the single-standard method, in which the absor-
bance of only one standard solution is measured and a line is drawn through it as the standard curve. 
This method is useful only if we know the standard curve to be linear.

Even though absorbance is directly proportional to concentration, the relationship does not remain 
linear as concentration continues going up (Figure 9-2 n). For any chromophore, the concentration 
range in which absorbance is linear must be determined experimentally, and any absorbance reading 
above that range should not be trusted when used in Beer’s law.

Sometimes a chemical substance does not obey Beer’s law at any concentration, giving instead a 
curve across the entire range. The reasons for this behavior we leave to a chemistry textbook.

Therefore, generating a standard curve from several data points has at least two major advantages 
over the single-standard method.

 • It can reveal nonlinearity that might be present so that (1) the sample may be diluted into the linear 
range or (2) the data may be fit to a curve by means of nonlinear regression.

 • It averages out random errors over all the standards.

However, the additional time and cost represent one disadvantage of the standard-curve method over 
the single-standard method.

n Figure 9-2 Relationship between absorbance (A) and concentration 
eventually becomes nonlinear.

Concentration

A

Relationship is linear.
Beer’s law is VALID.

Relationship is nonlinear.
Beer’s law is INVALID.
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enzyme KineticS
Because few reactions would otherwise proceed fast enough to sustain life, nearly every chemical reaction 
that occurs in a living thing is catalyzed. And almost all known biological catalysts, called enzymes, are 
proteins. In fact, until the discovery of catalytic ribonucleic acid in the 1980s, all enzymes were thought 
to be proteins.

The significance of enzymes in the clinical laboratory is two-fold. First, the activity of an 
enzyme in a patient specimen can give clues to a diagnosis. Examples are the enzyme alanine 
aminotransferase in liver damage, glucose-6-phosphate dehydrogenase in hemolytic anemia,  
alkaline phosphatase in bone disease, amylase in pancreatitis, and aetylcholinesterase in insecticide 
poisoning.

Second, selected enzymes are intentionally incorporated into assays as reagents. For example, the 
enzyme alkaline phosphatase is used in some assays to generate a fluorescent product whose quantity is 
directly proportional to the concentration of the analyte in the specimen.

Enzymes are strikingly efficient as catalysts. They can increase the reaction rate as much as 1020@fold 
and are often many orders of magnitude more efficient than synthetic catalysts. The quantitative study of 
enzyme catalysis, or enzyme kinetics, which has been developed over decades, enables us to understand 
not only how enzymes accomplish their extraordinary feats but also how we can measure their activity 
and exploit them in the clinical laboratory.

Reaction Rates
The rate is a measure of how fast a reaction is going. (Rates are sometimes incorrectly described as “fast” 
or “slow,” even though it is the reactions that are fast or slow; rates themselves are “high” or “low.”) 
Consider the simple reaction A S Z. In practical terms, the rate of a reaction is determined by rapidly 
mixing the reactants in a tube or other vessel and then determining the concentration either of a reactant 
(called a “substrate” if the reaction is enzyme-catalyzed) or of a product after a certain amount of time 
has passed (Figure 9-3 n).

ChECkpoint 9-1

 1. Calculate the concentration of a solution whose absorbance is 0.388, when the path 
length is 1 cm and the molar absorptivity is 2500 L # mol-1 # cm-1.

 2. Calculate the concentration of a solution whose absorbance is 0.917, when the path 
length is 1 cm and the molar absorptivity is 22,100 L # mol-1 # cm-1.

 3. if the concentration of a solution whose absorbance is 0.600 is diluted 1:2, what is the 
final absorbance?

 4. Calculate the absorbance of a solution whose transmittance is 0.22.

1. We use the equation

 c =
A

ϵ * l

 c =
0.388

(2500 L # mol-1 # cm-1)(1 cm)
= 1.55 * 10-4 mol/L

2. The procedure is the same as for problem 1. The answer is 4.14 * 10-5 mol/L.

3.  Because absorbance is directly proportional to concentration, the two variables 
change by the same factor. A dilution of 1:2 brings the concentration down to  
one-half of its original value. Therefore, the absorbance also goes down one-half, 
to 0.300.

4. The absorbance is

A = - log T = - log 0.22 = 0.658
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The reaction rate is the change in concentration of A or Z divided by the corresponding change 
in time:

[Z]2 - [Z]1
t2 - t1

=
∆[Z]
∆t

or

[A]2 - [A]1
t2 - t1

=
∆[A]
∆t

The units, of course, are those of concentration per time, examples being “μmol/L/second,” “mg/dL/
minute,” and “mEq/mL/minute.” Realize, however, that the reaction rate is not necessarily constant; rather, 
it is only an average over the time interval specified. Appendix  9-1 on the website discusses chemical 
kinetics in more detail.

Assay Modes
In the clinical laboratory, chemical reactions are used to quantify many analytes, and a good number of 
those reactions employ enzymes as reagents. In an end-point assay (Figure 9-4A n), we measure absor-
bance at a fixed time point, which may be several minutes or several hours after the reaction begins. We 
then calculate the concentration either from a standard curve, from a single standard, or from the molar 
absorptivity. From that concentration, then, we compute a reaction rate. A two-point assay (Figure 9-4B),  
by contrast, measures the absorbance at each of two time points; we then calculate the reaction rate 
between them. A kinetic assay (Figure 9-4C) takes absorbance readings at several time points, from all 
of which we then compute the rate.

Of these three, the kinetic assay is most reliable because it can confirm linearity between absorbance 
and time, in which case the reaction rate would be constant and one could conclude that (a) all reac-
tion conditions are the same from one measured absorbance to the next and that (b) the assay depends 
only on the analyte’s concentration. The two-point and end-point assays are less reliable because they 
assume linearity.

Reaction Phases
An enzyme-catalyzed reaction typically has three phases (Figure 9-5 n). During the lag phase, which 
is the earliest and which may last for 1 or 2 minutes, various processes may be under way, such as 
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n Figure 9-3 The change in concentration of the reactant A (blue curve) and the 
product z (pink curve), as a function of time, for the reaction A S z.
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temperature stabilization and enzyme activation by cofactors or coenzymes. The reaction rate increases 
during this phase until it reaches a constant value, at which point the linear phase begins. Throughout 
this phase, the concentration of product is directly proportional to time, which means that the relation-
ship between concentration and time is linear. As more time passes, the reaction enters the substrate-
depletion phase, in which the substrate supply has diminished so much that product formation slows 
down, eventually becoming a plateau where its rate approaches zero.

The Michaelis-Menten Equation
As explained earlier and in Figure 9-5, the rate is constant only in the linear phase. In this phase, the 
rate is called the initial rate. Figure 9-6 n shows the change in concentration of Z as a function of time 
at three starting substrate concentrations. Not surprisingly, the initial rate increases with the substrate 

n Figure 9-4 Assay modes. (A) End-point assay. Absorbance is measured at only 
one time point after the reaction starts. (B) Two-point assay. Absorbance is measured 
at each of two time points. (c) Kinetic assay. Several absorbance readings are taken.
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n Figure 9-5 Typical phases of an enzyme-catalyzed reaction. Lag phase: the 
enzyme is undergoing activation by cofactors and coenzymes in the reaction 
mixture. Linear phase: the concentration of product z is directly proportional to 
time, and the reaction rate is, therefore, constant. Substrate-depletion phase: the 
reaction has proceeded so long that the substrate has been consumed and the 
concentration of z has stopped changing (i.e., the rate goes back down to zero).
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concentration at the beginning of the reaction. Each initial rate is the slope of its line, which, of course, 
can be described by an equation of the form y = mx + b.

The initial rate (v) can be plotted against the starting substrate concentration ([S]), giving a curve 
like that in Figure 9-7 n. At low [S], v increases almost linearly with [S]. As [S] continues increasing, 
however, v rises more slowly, eventually entering a plateau where it nearly stops rising even though [S] 
continues going up. The value that the rate approaches at very high [S] is known as the maximal velocity, 
symbolized as Vmax. In this region of the graph, where the rate does not respond appreciably to further 
increases in substrate concentration, the enzyme is said to be saturated because it cannot bind substrate 
any faster. (The Vmax is an asymptote, a line that a curve approaches without ever merging with it.) The 
value of [S] at half of Vmax is defined as KM.

In 1913, Leonor Michaelis and Maude Menten proposed a model to explain this behavior. In their 
model, the enzyme binds the substrate, executes the necessary chemical changes, and then releases the 
product; after this last step, the enzyme is ready to repeat the process. Emerging from this model is the 
Michaelis-Menten equation, which describes the curve in Figure 9-7:

v =
Vmax[S]

KM + [S]

Appendix  9-2 on the website lays out their model in detail and derives Equation 2.
Figure 9-7 shows us that when [S] is very large, v is Vmax. Moreover, when v = 1�2 Vmax, the sub-

strate concentration, [S], is defined as KM. KM reflects the affinity of enzyme for substrate, or, in a sense, 
the strength of binding between enzyme and substrate. As affinity rises, therefore, the concentration 
of substrate necessary to bring v to 1�2 Vmax falls because the enzyme can bind the same number of 
substrate molecules even with fewer of them present. As affinity falls, however, the concentration 
of substrate necessary to bring v to 1�2 Vmax rises because the enzyme can bind the same number of 
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n Figure 9-7 A graph of the Michaelis-Menten equation (Equation 2).
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n Figure 9-6 Initial rates of the enzyme-catalyzed reaction A S z at three 
starting substrate concentrations, [S]x. The initial rate (v) at each [S] is the slope of 
the linear part (broken blue line) of the curve.
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molecules only when more of them are present. Thus, as affinity increases, KM decreases; as affinity 
decreases, KM increases.

At low [S], the initial rate is close to linearity. In this part of the curve, the reaction is called first-
order because its initial rate is directly proportional to substrate concentration. At high [S], however, the 
initial rate does not depend on substrate concentration. In this part of the curve, the reaction is said to 
be zero-order because its rate does not change with further increases in [S]. Appendix  9-1 on the website 
discusses reaction order in greater depth.

Physiological Significance of KM
As Figure 9-7 illustrates, the initial rate can increase with a substrate concentration that is slightly 
below, at, or slightly above KM. Consider an example of this property at work in a biochemical 
pathway.

There are two enzymes that catalyze the phosphorylation of glucose in the cell: hexokinase and 
glucokinase. Their KM values are about 0.1 mmol/L and 10 mmol/L, respectively (Figure 9-8 n). What 
this means is that, as the glucose concentration gradually rises from about 4 mmol/L after several hours 
of fasting to about 20 mmol/L after a meal, the rate of the glucokinase-catalyzed reaction can increase, but 
that of the hexokinase-catalyzed reaction cannot. This is so because hexokinase is already functioning at 
or near its Vmax when glucose is present at 4 mmol/L, whereas glucokinase is functioning well below its 
Vmax. Glucokinase, therefore, is the enzyme that responds to changes in the concentration of circulating 
glucose. After a meal, this acceleration of glucose phosphorylation translates into faster glycogen storage 
in the liver, release of insulin by the pancreas, and removal of excess glucose from the blood. Appendix  
9-3 on the website presents another example of the physiological significance of KM, this one focusing 
on ethanol metabolism in the liver.

Significance of KM in the Clinical Laboratory
Enzymes in patient specimens are typically assayed at saturating substrate concentrations so that v is at 
Vmax. This ensures that only the concentration of enzyme in the specimen affects the observed rate. To 
achieve this condition in vitro, the substrate concentration is set at 20–100 times the KM.
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n Figure 9-8 Physiological significance of KM, exemplified by two enzymes 
that phosphorylate glucose. As the glucose concentration rises from 4 mm after a 
fast to 20 mm after a meal (yellow area), only the glucokinase-catalyzed reaction 
(blue curve) goes faster. Hexokinase (pink curve) cannot increase its rate because 
it is already operating at its own Vmax. Acceleration of the glucokinase-catalyzed 
reaction in the liver and pancreas ultimately leads to removal of excess glucose 
from the blood.
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Linear Transformations
Generating enough data points to draw an accurate curve of v versus [S] (Figure 9-7) is quite difficult. 
Even when there are enough data points, though, gleaning accurate values for Vmax and then KM is a bit 
perilous because visually evaluating an asymptote is a matter of human judgment.

To circumvent this obstacle, various linear transformations of the Michaelis-Menten equation 
(Equation 2) have been developed over the years. Straight lines, of course, are easier both to draw and to 
interpret than are curves. Nevertheless, as Chapter 8 explains, high-speed computers have nearly obvi-
ated these techniques. In fact, linear transformations are almost obsolete, except that (1) they display 
data in such a way that makes visual interpretation easy and quick and (2) they expose features of the 
data that curves obscure.

Lineweaver-Burk Plots
The most widely used linear transformation of the Michaelis-Menten equation (Equation 2) has been

1
v

= a KM

Vmax
b  

1
[S]

+
1

Vmax

This linear equation emerges from straightforward rearrangement of Equation 2:

 v =
Vmax[S]

KM + [S]

 
1
v

=
KM + [S]
Vmax[S]

 
1
v

=
KM

Vmax[S]
+

[S]
Vmax[S]

 
1
v

= a KM

Vmax
b  

1
[S]

+
1

Vmax

Equation 3 fits the slope-intercept form for straight lines, y = mx + b, where y is 1/v and x is  
1/[S]. A graph of this equation is known as a double-reciprocal or Lineweaver-Burk plot (Figure 9-9 n). 
The slope of this line is KM/Vmax and the y-intercept is 1/Vmax. The x-intercept is -1/KM. Clearly, when 
visual inspection is the method, evaluating KM and Vmax on a Lineweaver-Burk plot is much easier than 
it is on a direct plot of the Michaelis-Menten equation.

Consider an example involving hypothetical data gathered on an enzyme-catalyzed reaction 
(Table 9-1 H). A direct plot of the data gives the expected Michaelis-Menten curve (Figure 9-10A n) 
and a plot of the reciprocals gives a straight line (Figure 9-10B).

n Figure 9-9 A typical Lineweaver-Burk plot.
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For the data in Table 9-1, the Vmax is the reciprocal of the y-intercept on the Lineweaver-Burk plot 
(Figure 9-10B). Because the line crosses the y-axis at 0.02 seconds/pmol, the value of Vmax is 50 pmol/
second:

 
1

Vmax
= y­intercept

 
1

Vmax
=

0.02 seconds
pmol

 Vmax =
50 pmol

second

The KM is the negative reciprocal of the x-intercept. Because the line crosses the x-axis at -0.03 mL/nmol, 
the value of KM is 33 nmol/mL:

 
-1
KM

= x­intercept

 
-1
KM

=
-0.03 ml

nmol

 KM =
33 nmol

mL

n Figure 9-10 Plots of hypothetical data in Table 9-1. (A) Direct plot of the raw data. (B) Lineweaver-Burk plot 
of the reciprocals of the data.
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raw Data reciprocals

[S] 
(nmol/mL)

v 
(pmol/second)

1/[S]
(mL/nmol)

1/v
(seconds/pmol)

  2  3.1 0.500 0.323

  5  7.2 0.200 0.139

 10 12.9 0.100 0.078

 20 22.0 0.050 0.045

 40 33.0 0.025 0.030

 70 40.2 0.014 0.025

100 42.1 0.010 0.024
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In this example, we used only our eyes to estimate the values of Vmax and KM. Chapter 8 details 
rigorous mathematical procedures for fitting a line to data points and for finding the best equation to 
describe that line.

Our example in Figure  9-10B illustrates a major drawback of the Lineweaver-Burk  
transformation. Because it plots reciprocals of the raw data, the spacing is not uniform across the range 
of concentrations used. The data points are compressed at low values of 1/[S], which correspond to high 
values of [S]. Consequently, drawing an accurate line through them poses a challenge to the naked eye, 
a challenge that carries less risk only when proven statistical methods are brought to bear on the data.

There is, however, another major drawback of the Lineweaver-Burk transformation. Experimental 
uncertainty in the data is not uniform, being larger at low values of [S], which correspond to high values 
of 1/[S]. We might ask how significant such uncertainty can be in evaluating Vmax and KM on a double-
reciprocal plot.

To answer this question, let us consider a reaction whose true rate at [S]1 is 2.00 mm/min. If the uncer-
tainty in the measurement is {0.10 mm/min, then the observed rate might be as high as 2.10 mm/min.  
Thus, the observed value of 1/v would be 0.48 min/mm, as opposed to the true 1/v of 0.50 min/mm.  
The difference is 0.50 - 0.48, or 0.02 min/mm. At a higher substrate concentration, [S]2, where the true 
rate is 10.0 mm/min, the same uncertainty in the measurement would generate a difference of 0.001 min/
mm between the observed and true values of 1/v.

On a double-reciprocal plot, therefore, these two data points would have uncertainties that differ 
by a factor of 20! Even using proper statistical procedures, one cannot with high confidence draw a line 
through data points whose uncertainties differ so much from each other.

Despite obsolescence and disadvantages, there are at least three reasons that the clinical laboratory 
scientist should be comfortable constructing and reading Lineweaver-Burk plots: (1) they are still com-
monly used, (2) they abound in the older literature, and, as mentioned above, (3) they display data in a 
uniquely effective way. The last of these reasons is especially valuable in the context of enzyme inhibition. 
Appendix  9-4 on the website discusses linear transformations in greater depth.

pH BuFFering
As Chapter 5 explains, pH affects many chemical reactions in the laboratory and nearly all physiological 
processes in the human body. Therefore, maintaining proper pH, whether in a test tube or in a living cell, 
is vital. In a test tube, for example, the pH of a solution can decrease as CO2 from the air dissolves into it 
and generates carbonic acid. But the pH can be higher than expected if a trace of detergent remains on the 
glassware in which a solution is prepared. In a living cell, the pH would drop fast as the acidic products 
of ordinary metabolism accumulate.

However, when the pH of a solution is buffered, it does not change significantly when acid (H+) 
or base (OH-) enters the system in a small amount. What carries out the buffering are certain chemical 
substances present in the solution that remove excess H+ or OH- as either of these appears, thereby 
keeping the pH about the same.

The Acid Dissociation Constant
An acid (HA) is a substance that dissociates in water to give a hydrogen ion (H+) and a base (A-). In fact, 
A- is considered the conjugate base of HA, and HA the conjugate acid of A-. The two together are a 
conjugate acid-base pair:

HA ∆ H+ + A-

Strong acids dissociate completely, whereas weak acids dissociate only partially, establishing an equilib-
rium among HA, H+, and A-. That equilibrium is quantified by the constant Ka:

Ka =
[H+][A-]

[HA]

where each pair of brackets represents molarity.
The constant “Ka” goes by several names, the most common being acid dissociation constant. 

It puts a number on the strength of an acid. As that strength increases, the acid dissociates more; 
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consequently, [H+] and [A-] go up, [HA] goes down, and the value of Ka rises. Conversely, as the strength 
of an acid decreases, less dissociation occurs; consequently, [H+] and [A-] go down, [HA] goes up, and 
the value of Ka falls. Thus, Ka parallels acid strength. If, for example, the Ka of acid X is 1.0 * 10-5 and 
the Ka of acid Y is 4.0 * 10-6, then acid X is the stronger.

Recall that pH simplifies expression of the concentration of H+ in a solution:

pH = - log [H+]

Similarly, pKa simplifies expression of the dissociation constant of an acid:

pKa = - log Ka

Just as pH and [H+] move in opposite directions, so do pKa and Ka. A stronger acid has a high Ka and 
a low pKa, whereas a weaker acid has a low Ka and a high pKa. Therefore, using the example above, we 
see that the pKa of acid X is 5.0 and the pKa of acid Y is 5.4. Having the lower pKa, acid X is the stronger.

How a Buffering System Works
When pH is buffered, as mentioned earlier, a chemical substance present in the solution removes excess 
H+ or OH- as either of these arises, thereby keeping the pH about the same. The buffering chemical 
substance is itself a weak acid (HA) in equilibrium with its conjugate base (A-). If H+ enters the system, 
then the conjugate base, A-, reacts with it to generate HA:

H+ + A- S HA

Consequently, H+ does not accumulate as fast as it would otherwise, and the pH stays close to its original 
value. If OH- enters the system, however, then HA reacts with it to generate water and A-:

HA + OH- S H2O + A-

As long as there is sufficient A- present to take up new H+, along with sufficient HA to eliminate 
new OH-, the pH is buffered. We can prepare pH-buffered solutions (commonly called “buffers”) by 
dissolving HA and a salt of A- in known amounts. To do so, we employ a special equation that relates 
[HA], [A-], pH, and pKa.

The Henderson-Hasselbalch Equation
To prepare a buffer at a selected pH, use the Henderson-Hasselbalch equation:

pH = pKa + log 
[A-]
[HA]

This equation tells us the ratio of the base concentration [A-] to that of the conjugate acid [HA] in a 
solution at any pH, when the pKa of HA is known. A conjugate acid-base pair buffers most effectively at 
a pH that is within about 1 unit of the acid’s pKa. In other words, an acid-base pair is most suitable as a 
buffer when

pH = pKa { 1

It is in this range that the concentrations of HA and A- are about equal and buffering capacity is at its 
highest.

Suppose we want to prepare 1.0 L of a buffer at pH 5.0, with a total concentration of 0.10 m for the 
conjugate acid-base pair. We select an acid with a pKa between 4.0 and 6.0. Acetic acid qualifies with a 
pKa of 4.76. Of course, there are other considerations in choosing the acid-base pair, such as reactivity 
in the system being studied, but those are beyond the scope of this book.
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For the buffer solution we are preparing, let us now calculate the required concentrations of acetic 
acid (HA) and its conjugate base, acetate (A-). First, we use the Henderson-Hasselbalch equation to give 
us the ratio of [A-] to [HA]:

 5.0 = 4.76 + log 
[A-]
[HA]

 0.24 = log 
[A-]
[HA]

 antilog 0.24 = 100.24 =
[A-]
[HA]

 1.74 =
[A-]
[HA]

This means that the solution must have 1.74 times as much A- as it does HA. Because we know the total of 
A- and HA is 0.10 m, we can calculate their individual concentrations in the solution. We start with the ratio:

 1.74 =
[A-]
[HA]

 1.74 * [HA] = [A-]

The total concentration is 0.10 m:

[HA] + [A-] = 0.10 m

Substitution gives

[HA] + (1.74 * [HA]) = 0.10 m

Solving for [HA] gives

2.74 * [HA] = 0.10 m

[HA] = 0.0365 m

Therefore, [A-] is

0.10 m - 0.0365 m = [A-]

0.0635 m = [A-]

What this all means is that, if we prepare a solution of acetic acid at 0.0365 m with a salt of its con-
jugate base, such as sodium acetate, at 0.0635 m, then the pH will be 5.0. Furthermore, the pH will be 
buffered. The actual pH, of course, may deviate slightly from 5.0, depending on factors such as (1) the 
purity of our chemicals and (2) the accuracy of our measuring the volumes, weights, and pH; but we can 
adjust the pH by adding a strong acid or base in a negligibly tiny volume.

Now that we know the final concentrations of the acid-base pair, we can calculate the amounts of 
acetic acid and sodium acetate to measure out. We then dissolve the substances in water and dilute the 
solution to a final volume of 1.0 L. The mathematical techniques laid out in Chapter 4 are useful for this 
purpose. To see the rest of this calculation in detail, consult Appendix  9-5 on the website.

Physiological Acid-Base Calculations
The kidneys and lungs act to keep the pH of the blood between 7.35 and 7.45. However, when the pH 
of the blood falls below 7.35, there is too much acid; this state is called acidosis, which may be seen in 
uncontrolled diabetes mellitus, lung disease, and kidney disease. When the pH of the blood rises above 
7.45, there is too little acid (too much base); this state is called alkalosis, which can result from vomiting, 
hyperventilating, or moving to a higher altitude.

The primary pH-buffering system in the blood involves the conjugate acid-base pair of carbonic 
acid (H2CO3) and bicarbonate (HCO3

 -):

CO2 + H2O ∆ H2CO3 ∆ H+ + HCO3
 -

Appendix 9-5
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The concentration of H2CO3 in the blood is negligibly small, about 1000 times less than that of CO2:

dCO2 = 1000 * [H2CO3]

where dCO2 is the concentration of dissolved carbon dioxide in the blood. Therefore, we delete [H2CO3] 
from the chemical equation, which then becomes

CO2 + H2O ∆ H+ + HCO3
 -

which treats CO2, rather than H2CO3, as the acid. This equilibrium is catalyzed by the enzyme carbonic 
anhydrase, in the absence of which the reaction would proceed too slowly to sustain life.

As a metabolic waste product, CO2 assumes three forms in the blood:

 1. a dissolved gas,
 2. bicarbonate ion from the reaction CO2 + H2O ∆ H2CO3 ∆ H+ + HCO3

 -, and
 3. carbaminohemoglobin, in which the CO2 has attached covalently to hemoglobin in the erythrocytes.

The pH of blood is 7.4 and the relevant pKa is 6.1. Applying the Henderson-Hasselbalch equation 
to the carbon dioxide / bicarbonate buffering system gives

 7.4 = 6.1 + log 
[HCO3

 -]
dCO2

 1.3 = log 
[HCO3

 -]
dCO2

 20 =
[HCO3

 -]
dCO2

What this ratio says is that, in the blood, the HCO3
 - concentration is 20 times the CO2 concentration. To 

see the reason this ratio has a value of 20, consult Appendix  9-8 on the website.

Physiological Buffering
The pKa of this buffering system, 6.1, violates the guideline stated earlier that a conjugate acid-base 
pair is suitable as a buffer only when the pH is within 1 unit of the pKa. Nevertheless, the Henderson-
Hasselbalch equation tells us that, as long as the ratio of bicarbonate to dissolved carbon dioxide remains 
about 20, the pH stays about 7.4. Under normal conditions, the lungs and the kidneys maintain that ratio 
and, therefore, the proper pH.

The lungs respond to a drop in pH (excess acid) by hyperventilating, which removes more CO2 
from the blood, thereby lowering the concentration of carbon dioxide and raising the pH. However, an 
increase in pH (too little acid) causes the lungs to hypoventilate, which allows CO2 to accumulate in the 
blood, thereby raising the concentration of carbon dioxide and lowering the pH. Changes in the breath-
ing rate can affect blood pH in just a few seconds.

The kidneys regulate pH by controlling the reabsorption of HCO3
 - from the urine into the blood. 

As pH falls, the kidneys reabsorb more HCO3
 - to react with the excess H+ and remove it from circula-

tion. As pH rises, the kidneys reabsorb less HCO3
 -, allowing more H+ to accumulate and the pH to go 

back down. Unlike changes in the rate of respiration, these processes can take hours or days to affect 
blood pH.

CO2 as a Dissolved Gas
When there are several gases above a solution, each one has its own pressure, called partial pressure. In 
discussing the CO2/HCO3

 - buffering system, we use the CO2 concentration, not only because the H2CO3 
concentration is so low, but also because what we actually measure in the laboratory is the partial pres-
sure of CO2. Henry’s law says that the solubility of a gas is directly proportional to its partial pressure in 
equilibrium with the solution:

S = kPgas

where S is the mass of a gas that dissolves, Pgas is the partial pressure of that gas above the solution, and k 
is the Henry’s law constant for the gas (at a fixed temperature).

Appendix 9-8
“The Bicarbonate Buffer System of 
Blood”
www.myhealthprofessions .kit.com
PEARSON

www.myhealthprofessions.kit.com
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We can easily rationalize this equation by realizing that, to dissolve in a liquid, gas atoms or 
 molecules must strike the liquid’s surface. Increasing the pressure of a gas in contact with a liquid 
increases the collision rate with the surface; more gas dissolves, and its concentration in the solution 
goes up. The solubility has increased with pressure.

Therefore, the concentration of CO2 dissolved in a solution is related to the partial pressure of CO2 
above the solution by this equation:

dCO2 = α * PCO2

where α is the solubility coefficient (0.0301 mmol/L/mmHg). So, we substitute “dCO2,” which is 
“α * PCO2,” into the Henderson-Hasselbalch equation:

pH = pKa + log 
[HCO3

 -]
α * PCO2

In the clinical laboratory, we directly measure pH and PCO2. From these two values, we can calcu-
late the bicarbonate concentration by means of the Henderson-Hasselbalch equation, although methods 
do exist for quantifying it directly.

AciD-BASe DiSorDerS
As defined above, acidosis (pH 6 7.35) is the condition in which too much acid is present, and alkalosis 
(pH 7 7.45) is the condition in which too little acid (too much base) is present. As explained above, 
the lungs respond to acidosis by exhaling more CO2 and to alkalosis by exhaling less. The kidneys 
respond to acidosis by reabsorbing more HCO3

 - and to alkalosis by reabsorbing less. (Note that there 
are actually two sets of terms for these conditions. Technically, “acidosis” and “alkalosis” do not specify 
a fluid or a tissue in which the condition is occurring. However, the terms “acidemia” and “alkalemia” 
refer, respectively, to the states of excess acid and excess base in the blood. Medical professionals often 
interchange the “-osis” and “-emia” terms, unless a patient has both acidosis and alkalosis, one of which 
dominates the other to cause a net rise or fall in blood pH.)

Each condition, acidosis and alkalosis, is categorized by its cause: respiratory or metabolic. Respi-
ratory acid-base disorders result from abnormal breathing, whether caused by lung disease, airway 
obstruction, hyperventilation, or another condition. By contrast, metabolic acid-base disorders arise 
from changes in the bicarbonate concentration; such changes can be caused by kidney disease, diabetes, 
vomiting, poisoning, or some other condition. See Table 9-2 H.

Respiratory Acidosis
Hypoventilation (from airway obstruction, certain drugs, head injury, emphysema, asthma, etc.) can 
lead to an increase in the CO2 concentration in the blood (“hypercapnia”), which decreases the ratio of 
HCO3

 - to CO2 below 20 and pushes the pH down below 7.35 (“acidemia”). The body compensates for 
this condition by (1) buffering the excess H+ within cells and (2) reabsorbing more bicarbonate from 
the urine. Therefore, the laboratory findings in compensated respiratory acidosis are (1) a low pH, (2) a 
high PCO2, and (3) an increased concentration of HCO3

 -.

Respiratory Alkalosis
Hyperventilation (from anxiety, certain drugs, high altitude, fever, etc.) can lead to a decrease in the CO2 
concentration in the blood (“hypocapnia”), which increases the ratio of HCO3

 - to CO2 and raises the 

H tABle 9-2 The Four General Acid-Base Disorders

Disorder pH primary Abnormality compensation

Respiratory acidosis T cCO2 Renal reabsorption of HCO3
 -

Respiratory alkalosis c TCO2 Renal excretion of HCO3
 -

Metabolic acidosis T THCO3
 - Hyperventilation

Metabolic alkalosis c cHCO3
 - Hypoventilation
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pH above 7.45 (“alkalemia”). The body compensates for this condition by (1) releasing H+ ions from 
intracellular buffers, (2) reabsorbing less bicarbonate from the urine, and (3) excreting less H+ in the 
urine. Therefore, the laboratory findings in compensated respiratory alkalosis are (1) a high pH, (2) a low 
PCO2, and (3) a decreased concentration of HCO3

 -. There is also an increase in the Cl- concentration 
to maintain electrical neutrality in the plasma.

Metabolic Acidosis
When the concentration of HCO3

 - is too low, either through direct loss or through the buffering of 
excess acid, the ratio of HCO3

 - to CO2 is also too low, and the pH can fall below 7.35. Among the many 
causes are uncontrolled diabetes, diarrhea, prolonged exercise, kidney disease, and certain poisons. The 
body compensates for this condition by (1) extracellular buffering of excess H+ with HCO3

 -, (2) intracel-
lular buffering with proteins and with carbonates and phosphates in bone, (3) acceleration of respiration, 
and (4) greater excretion of H+ in the urine. Therefore, the laboratory findings in compensated metabolic 
acidosis are (1) a low pH, (2) a low PCO2, and (3) a decreased concentration of HCO3

 -.

Metabolic Alkalosis
The direct loss of H+ ions or the accumulation of HCO3

 - ions can lead to an increase in the ratio of 
HCO3

 - to CO2. This, in turn, can nudge the pH above 7.45. Such a loss of H+ can occur through vomit-
ing or through abnormally high urinary excretion. The accumulation of HCO3

 - can result from the loss 
of extracellular water (often because of a diuretic agent) as bicarbonate is retained; the retained HCO3

 - 
then reacts with H+ to form CO2, thereby raising the pH.

Metabolic alkalosis also arises when extracellular potassium levels are low. As potassium ions leave 
the cells in response to this condition, H+ ions replace them in order to maintain electrical neutrality. 
This shift of H+ ions from plasma into cells raises blood pH. Another cause of alkalosis is the immoderate 
use of alkalotic agents, such as antacids.

The body compensates for metabolic alkalosis by (1) releasing H+ from intracellular buffers,  
(2) reabsorbing less HCO3

 - from the urine, and (3) hypoventilating. The additional CO2 in the blood 
from hypoventilation generates more CO2, which brings down pH. The laboratory findings in com-
pensated metabolic alkalosis are (1) a high pH, (2) a high concentration of HCO3

 -, and (3) a high PCO2.

Anion gAp
For electrical neutrality, the total concentration of all positive charges in the plasma must equal the total 
concentration of all negative charges. As Chapter 5 explains, we normally express the concentration of 
an electrolyte as “mEq/L.” Therefore, when expressed as “mEq/L,” the total concentration of all cations 
in the plasma must equal the total concentration of all anions. Some of these ions are quantified routinely 
in the laboratory, whereas others are not:

cations Anions

routinely quantified Na+, K+ Cl-, HCO3
 -

not routinely quantified
(a.k.a. “unquantified ions”  
or “unmeasured ions”)

Mg2+, Ca2+, Zn2+, γ@globulins lactate, sulfate, phosphate, 
β@hydroxybutyrate, metabolites 
of poisons

The following equation expresses the relationship among the cations and anions in the plasma. 
Figure 9-11 n depicts this relationship.

[Na+] + [K+] + [UC] = [Cl-] + [HCO3
 -] + [UA]

 UC = unquantified cations (Ca2+, Mg2+, Zn2+, γ@globulins, etc.)
 UA = unquantified anions (lactate, sulfate, phosphate, β@hydroxybutyrate, albumin, metabolites 
 of poisons, etc.)
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Rearrangement of this equation gives

[Na+] + [K+] - [Cl-] - [HCO3
 -] = [UA] - [UC] = AG

where “AG” is the anion gap (Figure 9-11). It is the difference between the concentrations of the unquanti-
fied anions and the unquantified cations, representing the approximate concentration of unquantified 
anions in the plasma that are not balanced by unquantified cations. As a single number, the anion gap 
provides useful information about the cause of metabolic acidosis in a given patient.

The [UC] is comparatively low. Even when it does change, its impact on the AG is only minor. 
Therefore, we drop it from the equation:

AG = [Na+] + [K+] - [Cl-] - [HCO3
 -] = [UA]

Because [K+] also is comparatively low, we often omit it from the formula.

AG = [Na+] - [Cl-] - [HCO3
 -]

In practical terms, therefore, the AG is the difference between the concentration of the major cation 
in the plasma (Na+) and the total concentration of the major quantified anions (Cl- and HCO3

 -). For 
Equation 5, the reference range is 6–10 mEq/L. Although Equation 5 is used more often than Equation 
4, there are sometimes clinical reasons to include potassium in the formula. Nephrologists, for example, 
often prefer Equation 4 because of fluctuations in the potassium concentration during kidney disease.

During metabolic acidosis, an unquantified anion (e.g., lactate) accumulates with its accompany-
ing H+ ions. Those H+ ions are immediately buffered by HCO3

 - to produce CO2, which the lungs then 
exhale. The net result is a decrease in the concentration of HCO3

 -, along with an increase in the concen-
tration of the unquantified anion. Thus, the anion gap widens (its value goes up).

oSmolArity AnD oSmolAlity
Consider two solutions of unequal concentrations separated by a semipermeable membrane 
 (Figure  9-12 n). The membrane allows water, but not solutes, to pass through it. In a process 
called osmosis, water moves across the membrane from the solution of low solute concentration 
(the hypotonic side) to the solution of high solute concentration (the hypertonic side). The high 

n Figure 9-11 The anion gap (AG) is the approximate concentration of 
unquantified anions (UA) that are not balanced by unquantified cations (UC). The 
reference range for the AG is typically 8–12 mEq/L.

~150
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concentration is exerting an osmotic pressure that holds water on its side of the membrane, while 
drawing water from the other side. As water moves across the membrane, the concentration on the 
hypotonic side increases, and the concentration on the hypertonic side decreases. Thus, osmosis 
reduces the difference in concentration between the two solutions.

An osmole (“Osm”) is a mole of osmotically active particles (dissolved particles that cannot cross 
the membrane). One mole of sodium chloride dissociates into two moles of ions (NaCl S Na+ + Cl-). 
Therefore, a NaCl solution at a concentration of 1 mol/L has a concentration of 2 Osm/L. Likewise, a 
potassium sulfate solution at 1 mol/L has a concentration of 3 Osm/L because one mole dissociates into 
three moles:

K2SO4 S 2K+ + SO4
 2-

For substances that do not dissociate, such as sucrose and urea, molarity equals osmolarity.
The osmolarity of a solution is the number of osmoles of particles per liter of solution. By contrast, 

osmolality is the number of osmoles of particles per kilogram of solvent. This distinction is the same as 
it is for their counterparts, molarity and molality. The reason the clinical laboratory favors osmolarity 
less is that its value depends on the volume of water, which, in turn, depends on temperature.

The osmolality of plasma or urine is measured directly in an osmometer. Osmolarity, however, is 
calculated from the concentrations of the major osmotically active solutes (sodium, glucose, and urea) 
determined routinely by other analytical methods. If the concentrations of glucose and BUN are in “mg/
dL,” as they sometimes are, then the formula is

plasma osmolarity = 2[Na+] +
[glucose]

18
+

[BUN]
2.8

Appendix  9-6 on the website explains the rationale behind this formula.

oSmolAlity gAp/oSmolArity gAp
The difference between the measured osmolality (MO) and the calculated osmolality (CO) is the 
 osmolality gap (OG):

OG = MO - CO

For most patients, this value is between -10 and +10. The calculated osmolality comes from a slight 
modification of Equation 6 that corrects for the difference between molaRity and molaLity:

calculated osmolality = 2[Na+] +
1.15 * [glucose]

18
+

[BUN]
2.8

Appendix 9-6 
“The Formula for Calculating Plasma 
Osmolarity”  
www.myhealthprofessions.kit.com

n Figure 9-12 Osmosis. Water moves across a semipermeable membrane from 
the solution of low concentration to the solution of high concentration, thereby 
reducing the difference between them.

Movement of water

High solute concentration
(hypertonic)

Low solute concentration
(hypotonic)

Semipermeable membrane
(permeable only to water)

Equation 6

Equation 7

PEARSON
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A high OG (7  14) suggests either of two possibilities: (1) the abnormal presence of a solute such as 
ethanol, methanol, or ethylene glycol, or (2) a condition, such as hyperlipidemia or kidney failure, that 
raises the concentrations of endogenous substances. However, because ethanol is so often the cause of 
an elevated OG, its concentration can be inserted directly into Equation 7:

calculated osmolality = 2[Na+] +
1.15 * [glucose]

18
+

[BUN]
2.8

+
1.2 * [ethanol]

4.6

Therefore, when the osmolality gap remains high even after correction for ethanol, one should consider 
the possibility that another toxic alcohol is present.

ChECkpoint 9-2
Calculate the osmolality gap for a patient whose test results are the following:

Na = 143 mEq/L  Gluc = 104 mg/dL  BUN = 4 mg/dL

Measured osmolality = 301 mOsm/kg

The first step is to calculate the osmolality using Equation 7:

CO = 2(143) +
1.15 * 104

18
+

4
2.8

= 294 mOsm/kg

The second step is to calculate the difference between the measured and calculated 
osmolalities:

 OG = MO - CO

 OG = 301 mOsm/kg - 294 mOsm/kg

 OG = 7 mOsm/kg

 Equation 8

lipiD cAlculAtionS
Triglycerides (more correctly called “triacylglycerols”) are fats, which function as energy storage. Cho-
lesterol, however, is a steroid alcohol that serves as a precursor of steroid hormones and bile acids and 
that helps stabilize cell membranes.

Because they are insoluble in water, triglycerides and cholesterol are transported in the blood asso-
ciated with proteins; these complexes are called lipoproteins, and we classify them by their density. 
The major lipoproteins are high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very-low-
density lipoprotein (VLDL).

In the clinical laboratory, total cholesterol, HDL cholesterol, and triglycerides are all quantified 
directly, usually by automated methods. Although LDL cholesterol is sometimes quantified by those 
methods, they are time-intensive and expensive, and they require special equipment not often available. 
Consequently, many laboratories calculate the LDL value from the other concentrations by means of 
the Friedewald equation:

[LDL] = [Cholesterol]total - [HDL] -
[TG]

5

Equation 8 is based on the fact that the total concentration of cholesterol is the sum of the choles-
terol concentrations in HDL, LDL, and VLDL:

[Cholesterol]total = [Cholesterol]HDL + [Cholesterol]LDL + [Cholesterol]VLDL

or, more simply,

[Cholesterol]total = [HDL] + [LDL] + [VLDL]
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Therefore,

[LDL] = [Cholesterol]total - [HDL] - [VLDL]

Furthermore, the VLDL concentration is generally about one-fifth of the triglyceride concentration:

[VLDL] =
[TG]

5

Substitution of Equation 10 into Equation 9 gives Equation 8 above.
Beware, however, that there are at least three conditions in which we should not apply the Friedewald 

equation: hypertriglyceridemia (i.e., when [TG] 7 400 mg/dL), chylomicronemia, and dysbetalipopro-
teinemia. Underlying these limitations are two assumptions that the Friedewald equation makes and 
that are not strictly true: (1) that nearly all the circulating TG is in VLDLs and (2) that the ratio of [TG] 
to [cholesterol]VLDL is constant at 5. In lipid disorders such as those listed above, these assumptions lose 
even more of their validity, and either the concentration of LDL cholesterol must be determined directly 
by a laboratory method or special correction factors must be included in the calculation.

ChECkpoint 9-3
From the following laboratory results, calculate the LDL concentration by means of the 
Friedewald equation.

 Total cholesterol = 269 mg/dL

 Triglycerides = 185 mg/dL

 HDL = 30 mg/dL

[VLDL] = [TG] , 5 = (185 mg/dL) , 5 = 37 mg/dL

[LDL] = 269 mg/dL - 30 mg/dL - 37 mg/dL = 202 mg/dL

Equation 9

Equation 10

Equation 11

creAtinine cleArAnce
A creatinine clearance test determines the rate at which the kidneys remove creatinine from the blood. 
As a breakdown product of creatine phosphate in muscle cells, creatinine enters the bloodstream at a 
fairly constant rate, and the kidneys clear it from the blood with little reabsorption. Therefore, the con-
centrations of creatinine in the blood and urine can be used to estimate the glomerular filtration rate 
(GFR), which is the rate at which the kidneys are filtering blood through the glomeruli. This information 
is valuable in the assessment of kidney function, particularly in ascertaining whether the GFR is normal 
and whether it is stable over time.

Creatinine is not the only substance useful for measuring GFR. There are clearance tests for sev-
eral others, some intrinsic and others extrinsic to the human body. Intrinsic clearance tests use endog-
enous substances, most commonly creatinine and urea; extrinsic tests, by contrast, employ exogenous 
substances, such as inulin, iohexol, p-aminohippurate, and radiolabeled isothalamate. Extrinsic tests 
are uncommon because the substance must be introduced into the blood by intravenous infusion and 
because the analytical methods are expensive and time-consuming.

The creatinine clearance test requires a 24-hour urine specimen (all the urine the patient voids 
within a 24-hour period) and a blood specimen drawn at either the beginning or end of that 24-hour 
period. Creatinine in the urine and blood is then quantified, and the GFR is calculated. The calculation, 
however, includes the surface area of the patient’s body because the rate of creatinine production and 
excretion depends on lean-muscle mass. The equation for the clearance rate is

Ccreatinine = ¢Ucreatinine * Vurine

Pcreatinine
≤ * ¢1.73 m2

A
≤

where Ccreatinine is the creatinine clearance rate (mL/min), Ucreatinine is the urinary concentration of cre-
atinine (mg/dL), Vurine is the volume of urine excreted per minute (mL/min), Pcreatinine is the plasma 

Advanced topic V
“Estimation of Glomerular  
Filtration Rate by Means of  
Exogenous Tracers”  
PEARSON
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concentration of creatinine (mg/dL), and A is the surface area of the patient’s body (m2). The reference 
range is 82–140 mL/min for men and 75–128 mL/min for women.

We compute the value of Vurine from the total volume of the 24-hour urine specimen. For example, 
if the patient passed 1500 mL of urine in 24 hours (and collected it all), then the volume excreted per 
minute is

Vurine = a1500 mL
24 h

b * a 1 h
60 min

b = 1.04 mL/min

The second term in the equation, 1.73 m2/A, is a correction factor for the patient’s body surface area 
that allows for comparison of the patient’s clearance rate with the rates for other patients. The numerator 
of 1.73 m2 is the average body surface area for an adult. We can calculate the value of A from a formula or 
we can glean it from a nomogram (widely available in printed and electronic resources). The formula is

A = 0.007184 * W 0.425 * H0.725

or the equivalent,

A =
W 0.425 * H0.725

139.2

where A is the body surface area, W is weight (kg), and H is height (cm). To convert “pounds” to “kilo-
grams,” multiply by 0.45; to convert “inches” to “centimeters,” multiply by 2.54. To examine Equation 11 in 
depth, consult Appendix  9-7 on the website.

Shortcomings of the Test
Creatinine is not the ideal substance for a clearance test. Although its concentration in the blood is 
approximately constant, the renal tubules secrete creatinine in small amounts, thereby increasing its con-
centration in the urine and falsely elevating the clearance rate. Furthermore, the method for quantifying 
creatinine can affect the result, as can certain drugs, exercise, diurnal variation in the GFR, inadequate 
hydration during the 24-hour collection period, and failure to collect the urine properly.

Summary
 4. The Beer-Lambert law relates absorbance to the above 

three factors:

A = ϵ c l

  where ϵ is the molar absorptivity, c is the concentration, 
and l is the path length.

 5. Enzymes are biomolecules that catalyze reactions in living 
systems.

 6. Enzyme kinetics is the quantitative study of enzyme 
catalysis.

 7. in an end-point assay, absorbance is measured at a fixed 
time point, and the rate is calculated from a standard curve, 
a single standard, or molar absorptivity. in a two-point 
assay, absorbance is measured at each of two time points, 
and the rate between them is calculated. in a kinetic assay, 
absorbance is measured at each of several time points, and 
the rate is calculated from all of them. The kinetic assay is 
the most reliable.

 1. Solutions of some chemical substances absorb light that 
is directed through them. The fraction of light that passes 
through the substance is the transmittance:

T =
I
I0

 where I0 is the intensity of the light entering the solu-
tion and I is the intensity of the light emerging from the 
solution.

 2. Absorbance is related to transmittance by the equation

A = - log 
I
I0

= - log T

 3. Absorbance is directly proportional to (a) the concentra-
tion of the absorbing chemical substance, (b) the length of 
the path the light takes passing through the solution, and 
(c) the molar absorptivity, which represents the inherent 
ability of the chemical substance to absorb light of a given 
wavelength.

 Equation 12

Appendix 9-7 
“Making Sense of the Equation for 
Creatinine Clearance”  
www.myhealthprofessions.kit.com
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 18. in the laboratory, we directly measure the PCO2 rather than 
the concentration of H2CO3.

 19. Henry’s law states that the solubility of a gas is directly 
proportional to its partial pressure in equilibrium with the 
solution:

S = kPgas

  where S is the mass of a gas that dissolves, Pgas is the partial 
pressure of that gas above the solution, and k is the Henry’s 
law constant for the gas (at a fixed temperature).

 20. We can calculate the concentration of bicarbonate in a 
specimen from the measured pH and PCO2 by means of 
the Henderson-Hasselbalch equation:

pH = pKa + log 
[HCO3

 -]

α * PCO2

  where α is the solubility coefficient (0.0301 mmol/L/mmHg).
 21. We can differentiate the four compensated acid-base 

disorders of respiratory and metabolic acidosis and alka-
losis from each other by pH, PCO2, and bicarbonate 
concentration.

 22. The anion gap, which provides useful information about the 
cause of a metabolic acidosis, is the difference between the 
concentration of the major cation in the plasma (Na+) and 
the total concentration of the major quantified anions (Cl- 
and HCO3

 -):

anion gap = [Na+] - [Cl-] - [HCO3
 -]

  Sometimes potassium is included in the equation:

anion gap = [Na+] + [K+] - [Cl-] - [HCO3
 -]

 23. Osmosis is the phenomenon in which water moves across 
a semipermeable membrane from a solution of low solute 
concentration (the hypotonic side) to a solution of high sol-
ute concentration (the hypertonic side).

 24. Osmotic pressure is the force with which the hypertonic 
solution holds water in itself and draws water from the 
hypotonic solution.

 25. An osmole (“Osm”) is a mole of osmotically active particles.
 26. Osmolarity is the number of osmoles of particles per liter of 

solution. Osmolality is the number of osmoles of particles 
per kilogram of solvent.

 27. We measure osmolality directly. We calculate osmolarity 
from the concentrations of sodium, glucose, and BUN:

plasma osmolarity = 2[Na+] +
[glucose]

18
+

[BUN]
2.8

  where [glucose] and [BUN] are in “mg/dL.”
 28. The osmolality gap is the difference between the measured 

osmolality (MO) and the calculated osmolality (CO):

OG = MO - CO

  For most patients, this value is between -10 and +10. A 
high value suggests the abnormal presence of a solute or 
a condition that raises the concentrations of endogenous 
substances.

 8. An enzyme-catalyzed reaction typically has three phases: 
(a) lag phase, in which the rate is not yet linear, (b) linear 
phase, in which concentration is directly proportional to 
time, and (c) substrate-depletion phase, in which the rate 
goes to zero.

 9. The Michaelis-Menten model of enzyme catalysis is 
described by the equation

v =
Vmax [S]

KM + [S]

  where v is the observed reaction rate, [S] is the starting 
substrate concentration, Vmax is the maximal velocity (the 
highest reaction rate possible under the circumstances), 
and KM is the substrate concentration at half of Vmax. KM 
can be considered a measure of the affinity of an enzyme 
for its substrate.

 10. We can use linear transformations of the Michaelis-Menten 
equation to simplify evaluation of KM and Vmax. They have 
major weaknesses and are no longer necessary because 
curve-fitting computer programs can now evaluate the 
constants directly from the original data. Nevertheless, 
linear transformations are still uniquely effective for dis-
playing data.

 11. When buffered, the pH of a solution does not change 
significantly when acid or base enters the system in small 
amounts.

 12. A conjugate acid and a conjugate base are converted into 
each other by losing or accepting a hydrogen ion.

 13. The acid dissociation constant, represented as Ka, is a mea-
sure of the strength of an acid, rising and falling in parallel 
with it. The negative logarithm of Ka, represented as pKa, 
decreases with increasing strength of an acid and increases 
with decreasing strength:

pKa = - log Ka

 14. The Henderson-Hasselbalch equation relates pH, pKa, and 
the concentrations of conjugate acid and conjugate base. 
it is particularly useful for preparing solutions at selected 
pH values:

pH = pKa + log 
[A-]
[HA]

  where [HA] is the concentration of the acid and [A-] is the 
concentration of its conjugate base.

 15. Acidosis and alkalosis are the conditions in which, respec-
tively, there is too much acid and too little acid in body 
fluids. Acidemia is the condition in which the pH of the 
blood is below 7.35, and alkalemia is that when it is 
above 7.45.

 16. The primary pH-buffering system in the blood is the conju-
gate acid-base pair of carbon dioxide and bicarbonate:

CO2 + H2O ∆ H2CO3 ∆ H+ + HCO3
 -

 17. The pKa of the carbon dioxide / bicarbonate pair is 6.1. The 
lungs and the kidneys normally function to keep the ratio 
of [HCO3

 -] to [CO2] at 20 such that the pH of the blood 
remains at 7.4.
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 33. Creatinine clearance is used to estimate the glomerular 
filtration rate (GFR), which is the rate at which the kidneys 
are filtering blood through the glomeruli. This information 
is valuable in the assessment of kidney function. The rate 
of creatinine clearance is

Ccreatinine = ¢Ucreatinine * Vurine

Pcreatinine
≤ * ¢1.73 m2

A
≤

  where Ccreatinine is the creatinine clearance rate (mL/min),  
Ucreatinine is the urinary concentration of creatinine  
(mg/dL), Vurine is the volume of urine excreted per minute 
(mL/min), Pcreatinine is the plasma concentration of creati-
nine (mg/dL), and A is the surface area of the patient’s 
body (m2).

 34. We calculate body surface area from the equation

A = 0.007184 * W0.425 * H0.725

 where A is the body surface area, W is weight (kg), and  
H is height (cm).

 29. We calculate osmolality from this equation:

calculated osmolality = 2[Na+] +

 
1.15 * [glucose]

18
+

[BUN]
2.8

 30. We can correct the calculated osmolality for the presence 
of ethanol by this equation:

calculated osmolality = 2[Na+] +
1.15 * [glucose]

18
+

[BUN]
2.8

+
1.2 * [ethanol]

4.6

 31. We can calculate the concentration of LDL cholesterol by 
means of the Friedewald equation:

[LDL] = [Cholesterol]total - [HDL] -
[TG]

5

  where [HDL] is the concentration of HDL cholesterol and 
[TG] is the triglyceride concentration.

 32. The Friedewald equation should not be used when 
[TG] 7 400 mg/dL or when chylomicronemia or dysbeta-
lipoproteinemia is present.

Practice and Contextual Problems
 1. (LO 3) Supply the missing value for each of the following 

solutions. Assume linearity.
 3. (LO 3, 4) You have a solution at a concentration of  

4.6 * 10-5 m. At a wavelength of 305 nm, its absorbance is 
0.339. There is another solution of the same chemical sub-
stance under the same conditions, but its concentration is 
unknown. If the second solution’s absorbance is 0.502 at 305 
nm, then what is its concentration? The path length is 1.0 
cm, and the absorbance is known to be linear from 0 to 1.00.

 4. (LO 3, 4) You have a solution at a concentration of 
2.8 * 10-6 m. At a wavelength of 260 nm, its absorbance 
is 0.872. There is another solution of the same chemical 
substance under the same conditions, but its concentration 
is unknown. If the second solution’s absorbance is 0.077 at 
260 nm, what is its concentration? The path length is 1.0 cm 
and the absorbance is known to be linear from 0 to 1.00.

 5. (LO 1, 2, 3) Evaluate each of the following statements as 
true or false.

 (a) if the transmittance of a substance at 10 mm is 0.40, then 
its transmittance at 5 mm must be 0.20.

 (b) if the transmittance of a substance at 10 mm is 0.40, then 
its transmittance at 5 mm must be 0.80.

 (c) if the transmittance is 0.52, then the absorbance is 0.284.

 (d) if the molar absorptivity is 855 m-1 cm-1, the path length 
is 1.0 cm, and the concentration is 0.00036 m, then the 
absorbance is 0.308. Assume linearity.

 (e) if the molar absorptivity is 29,000 m-1 cm-1, the path 
length is 1.0 cm, and the absorbance is 0.188, then the 
concentration is 6.48 * 10-6 m. Assume linearity.

 2. (LO 2, 3) At 624 nm, substance Q has a molar absorptiv-
ity of 13,280 m-1 cm-1, and the absorbance is linear with 
concentration only from 1.0 * 10-5 up to 6.8 * 10-5 m. 
Consider three solutions of Q, each at a unique concentra-
tion. Under the same conditions of solvent, temperature, 
and so forth, the three solutions have these absorbance 
values at 624 nm (assume l = 1.0 cm):

#1: 0.239  #2: 0.478  #3: 0.956

 (a) What is the concentration of #2 relative to that of #1?

 (b) is the concentration of #3 four times that of #1? explain.

Solution A ϵ  (l # mol-1 # cm-1) c (mol/l) l (cm)

a 0.446 7020 1

b 0.917 13,400 1

c 0.205 0.00031 1

d 0.822 51,500 3.19 * 10-5

e 0.506 29,700 0.5

f 800 0.00050 1

g 1.123 6.7 * 10-4 1

h 0.174 662 1
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enzyme Km (�mol/l)

1 0.2

2 50

 (f) if the path length is 0.5 cm, the absorbance is 0.388, 
and the concentration is 9.2 * 10-5 m, then the molar 
absorptivity is 8435 m-1 cm-1, Assume linearity.

 (g) if the transmittance is 0.39, then the absorbance is 
0.409.

 (h) All else being constant, absorbance decreases as trans-
mittance increases.

 (i) All else being constant, absorbance decreases as path 
length increases.

 6. (LO 2, 3) You have the following data for a chemical sub-
stance in solution. (Assume the path length to be 1 cm.)

 8. (LO 9) The following set of data was collected in an enzyme 
kinetics experiment. Plot v as a function of [S] and 1/v as a 
function of 1/[S]. From the Lineweaver-Burk plot, estimate 
Vmax and KM.

[S] 
(�mol/l)

v 
(nmol/l/s)

0 0

10 30

20 53

40 85

80 123

120 144

160 159

 (a) Construct a standard curve from the data above.

 (b) Calculate the molar absorptivity.

 (c) if a solution of this substance has an absorbance of 
1.080, what is the concentration?

 (d) if a solution of this substance has an absorbance of 
1.500, should Beer’s law be used to calculate its con-
centration? Explain.

 (e) if a solution of this substance has an absorbance of 
1.647, describe a laboratory procedure for determining 
its concentration from the standard curve.

 (f) suppose you have a solution of absorbance 1.8. you 
mix 1.0 mL of the solution with 2.0 mL of appropriate 
solvent, and then you measure the absorbance of the 
resulting solution. if that absorbance is 0.757, what is 
the concentration of the original solution?

 7. (LO 9) The following set of data was collected in an enzyme 
kinetics experiment. Plot v as a function of [S] and 1/v as a 
function of 1/[S]. From the Lineweaver-Burk plot, estimate 
Vmax and KM.

[S] 
(�mol/l)

v 
(nmol/l/s)

0 0

2 0.061

4 0.110

8 0.186

12 0.240

16 0.281

20 0.314concentration 
(�mol/l) A380

10 0.041

50 0.205

100 0.410

200 0.821

300 1.230

400 1.394

 9. (LO 6) You work for a manufacturer of clinical assays that 
bases their reagents on enzymes.

 (a) your company is developing an assay for uric acid in 
serum. in this assay, an enzyme converts uric acid to 
a product that absorbs light, which the instrument 
measures.

  in the procedure, serum is pipetted into the reaction 
mixture, in which the uric acid concentration ranges from 
1 μmol/L up to 5 μmol/L, depending on the patient’s 
condition. your task is to select an enzyme appropriate 
for the assay; there are two that catalyze the desired 
reaction. On the basis of their KM values (all else being 
equal), identify the enzyme more suitable for incorpora-
tion into the assay. Explain.

 (b) your company is developing an assay for an enzyme in 
serum. The KM of the enzyme for its substrate is 9 mm. 
Therefore, how high or low should the concentration of 
substrate be in the reaction mixture?

 10. (LO 3, 6) The amount of enzyme present in a specimen is 
often expressed as “international units per liter” (IU/L). An 
IU is defined as the amount of enzyme in a specimen that 
catalyzes the reaction of 1 μmol of substrate per minute 
under specific conditions, such as pH and temperature.

  The enzyme alkaline phosphatase in serum is assayed in 1.0 
mL of a reaction mixture containing 25 μL of serum. The 
colorless substrate, p-nitrophenylphosphate, undergoes 
reaction to p-nitrophenol, which is bright yellow because 
it absorbs light at 405 nm with a molar absorptivity of 
18,450 L # mol-1 # cm-1. Incubation of the reaction mixture 
is carried out at 37°C. In the following run, the absorbance 
of the reaction mixture at 405 nm (A405) was read every 20 
seconds (s) (path length = 1 cm). From the data gathered, 
calculate the amount of enzyme (in “IU/L”) present in the 
serum.
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 11. (LO 6, 8, 9) The following data were collected for an 
enzyme kinetics experiment. At each of five starting sub-
strate concentrations ([S]x), the concentration of product 
was determined at six time points.

 14. (LO 12) Calculate the mass of KH2PO4 and of K2HPO4 
required to prepare 500 mL of a 50 mm phosphate buffer 
at pH 7.4. The relevant acid dissociation is

H2PO4
 - ∆ H+ + HPO4

 2-

  and the pKa = 7.2. The formula weights are 136.09 g/mol 
for KH2PO4 and 174.18 g/mol for K2HPO4.

 15. (LO 12) Calculate the mass of KH2PO4 and of K2HPO4 
required to prepare 100 mL of a 150 mm phosphate buffer 
at pH 7.2. The relevant acid dissociation is

H2PO4
 - ∆ H+ + HPO4

 2-

  and the pKa = 7.2. The formula weights are 136.09 g/mol 
for KH2PO4 and 174.18 g/mol for K2HPO4.

 16. (LO 12) Calculate the volume of acetic acid (CH3CO2H) 
and the mass of sodium acetate (CH3CO2Na) required to 
prepare 1.0 L of a 200 mm acetate buffer at pH 4.5. The 
relevant acid dissociation is

CH3CO2H ∆ H+ + CH3CO2
 -

  Pure acetic acid (called “glacial”) is a liquid at room tem-
perature, with a density of 1.049 g/mL and a formula 
weight of 60.05 g/mol. Sodium acetate is a solid, with a 
formula weight of 82.03 g/mol.

 17. (LO 14) For the test results shown on the following four 
blood specimens, calculate the corresponding bicarbonate 
concentrations.

patient pH

Pco2
(mmHg)

normal: 35–45

[Hco3
 -]

(mmol/l)
normal: 22–28

1 7.51 49 38

2 7.25 59 25

3 7.30 21 10

 (a) On a single graph, plot the data for the five starting 
substrate concentrations.

 (b) Plot the initial rate as a function of starting substrate 
concentration.

 (c) Plot a Lineweaver-Burk transformation of the curve in 
part b.

 (d) Evaluate KM and Vmax from both the curve and the line. 
Comment on the accuracy of the values.

 12. (LO 11) Calculate the pKa for each of the following five 
weak acids and rank the acids in order of descending 
strength.

Acid Ka

acetic 1.74 * 10-5 m

lactic 8.32 * 10-4 m

formic 1.78 * 10-4 m

salicylic 1.05 * 10-3 m

valproic 2.51 * 10-5 m

 13. (LO 12) Calculate the mass of KH2PO4 and of K2HPO4 
required to prepare 1.0 L of a 0.10 m phosphate buffer at 
pH 7.0. The relevant acid dissociation is

H2PO4
 - ∆ H+ + HPO4

 2-

  and the pKa = 7.2. The formula weights are 136.09 g/mol 
for KH2PO4 and 174.18 g/mol for K2HPO4.

Specimen
Pco2  

(mmHg) pH
[Hco3

 -] 
(mmol/l)

1 40 7.40

2 42 7.37

3 36 7.44

4 33 7.42

concentration of product (�mol/l)

time 
(s)

[S]1  
(1 mm)

[S]2  
(2 mm)

[S]3  
(4 mm)

[S]4  
(10 mm)

[S]5  
(40 mm)

  0  0   0   0   0   0

 10  5  10  18  38  80

 20 10  20  36  76 160

 40 20  39  72 152 320

 80 40  78 144 304 640

120 60 118 216 456 960

incubation time (seconds) A405

 20 0.033

 40 0.114

 60 0.195

 80 0.276

100 0.357

120 0.438

 18. (LO 13) Calculate the pH of a blood specimen with 
PCO2 = 37 mmHg and [HCO3

 -] = 21 mmol/L.

 19. (LO 13) Calculate the pH of the following buffer solution. 
The pKa of HCO2H is 3.75.

HCO2H ∆ H+ + HCO2
 -

 20. (LO 15) For each of the following patients, tell (a) whether 
the condition is acidosis or alkalosis, (b) whether the origin 
is respiratory or metabolic, and (c) whether compensation 
is present.

0.060 m                   0.040 m
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patient
[na+]

(meq/l)
[K+]

(meq/l)
[cl-]

(meq/l)
[Hco3

 -]
(meq/l)

1 140 4.6 103 25

2 136 5.1 108 22

3 148 5.0 101 19

 21. (LO 16) For each of the following patients, calculate the 
anion gap with and without potassium.

 24. (LO 20) Using the Friedewald equation, calculate the con-
centration of LDL cholesterol for each of the following 
specimens.

patient
H

(in)
W
(lb)

24-Hour 
urine  

Volume 
(ml)

plasma 
creatinine 

conc. 
(mg/dl)

urine 
creatinine 

conc.
(mg/dl)

1 59 155 1600 1.2 140

2 74 210 1830 1.9 128

3 70 183 1360 1.5 162

4 66 131 1780 2.3 155

 22. (LO 17) Calculate the osmolarity of each of the following 
solutions.

 (a) 0.1 m NaCl

 (b) 10 mm CaCl2

 (c) 50 mm KI

 (d) 0.25 m glucose

 23. (LO 18, 19) Use the data in the following table to solve the 
problems below.

Specimen
[na+]

(mmol/l)
[glucose]
(mg/dl)

[Bun]
(mg/dl)

measured
osmolality

1 142 80 16 304

2 136 135 14 299

3 148 220 19 310

 (a) Calculate the plasma osmolarity and osmolality for each 
specimen.

 (b) Calculate the osmolality gap for each specimen.

Specimen
[HDl]

(mg/dl)
[tg]

(mg/dl)
[cholesterol]

(mg/dl)

1 60 188 210

2 38 260 180

3 49 190 300

 25. (LO 21) Calculate the creatinine clearance rate for the fol-
lowing four patients.

PEARSON

Go to www.myhealthprofessionskit.com <http://www.myhealthprofessionskit.com/> to access the Compan-
ion Website created for this textbook. Use this address to access the Companion Website created for this text-
book. Simply select “Clinical Laboratory Science” from the choice of disciplines. Find this book and log in using 
your username and password to access additional practice problems, answers to the practice and contextual 
problems, additional information, and more.

www.myhealthprofessionskit.com
http://www.myhealthprofessionskit.com/
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Learning Objectives
At the end of this chapter, the student should be able to do the following:
 1. Calculate cell counts from hemacytometer data
 2. Calculate RBC indices from appropriate hematology data
 3. Verify the hemoglobin concentration, hematocrit, and RBC count by the 

Rule of Three
 4. Calculate the reticulocyte index
 5. Calculate the reticulocyte production index
 6. Calculate the reticulocyte percentage from data obtained by the slide 

method or by the Miller disk
 7. Plot osmotic fragility data and interpret the curves
 8. Calculate the International Normalized Ratio from appropriate data
 9. Explain the advantages in using a thromboplastin reagent with an Interna-

tional Sensitivity Index close to 1.0
10. Correct the WBC count for the presence of nucleated RBCs

Key Terms
hemacytometer
hematocrit
International Normalized Ratio (INR)
International Sensitivity Index (ISI)
mean cell hemoglobin (MCH)
mean cell hemoglobin  
  concentration (MCHC)

mean cell volume (MCV)
osmotic fragility
prothrombin time (PT)
red-cell distribution width (RDW)
reticulocyte index (RI)
reticulocyte production index (RPI)
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Manual Cell enuMeration
Although counting blood cells is now largely automated, we still perform manual enumeration occa-
sionally. In short, this procedure consists of diluting the blood with a special diluent, transferring a small 
volume of the diluted blood onto a ruled glass platform (a hemacytometer), and counting the cells under 
a microscope. We report the final result as the number of cells per mm3.

Figure 10-1 n shows a hemacytometer. It comprises two identical ruled glass platforms sepa-
rated by an H-shaped moat. On each platform is a 3 mm * 3 mm ruled square, subdivided into nine 
large squares, each being 1 mm * 1 mm. The four corner squares (labeled “W”) are each subdivided 
into 16 squares; these are used for counting white blood cells (WBCs).

We use the large square in the center, containing five “R”s, for counting red blood cells (RBCs) and 
platelets. This square is itself subdivided into 25 squares, each of which has an area of 0.04 mm2. There 
is further subdivision of the 25 squares into 16 squares each, creating 400 tiny squares in total. We use 
the five squares bearing “R”s for counting red blood cells, whereas we use the entire center square for 
counting platelets.

Flanking the ruled glass platforms are two raised ridges on which the cover glass rests. There is a 
distance of exactly 0.1 mm between the cover glass and the surface of the ruled counting area. Because 
the counting area measures 3 mm * 3 mm * 0.1 mm, its volume is 0.9 mm3.

n Figure 10-1 Hemacytometer with Neubauer ruling.
Source: McKenzie, Shirlyn B., Clinical Laboratory Hematology, 2nd Ed., c 2010. Reprinted and electronically reproduced 
by permission of Pearson Education, Inc., Upper Saddle River, New Jersey.

0.1 mm

Side view

Top view

Cover glass

H-shaped moat
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Through the V-shaped indentation, diluted blood enters the hemacytometer by capillary action into 
the counting area, where the cells are enumerated microscopically. Afterward, the procedure is repeated 
on the other side of the hemacytometer, and the two counts are averaged.

Enumerating Leukocytes
To count WBCs, whole blood is diluted 1:20 in a weak acid, which lyses (ruptures) the non-nucleated red 
blood cells. After the hemacytometer is charged with the diluted blood, cells are counted microscopically 
in the four large corner squares labeled “W.”

Suppose the four corner squares on one side of the hemacytometer give WBC counts of 25, 24, 28, 
and 22. The four counts from the other side of the hemacytometer are 26, 30, 31, and 28. The difference 
between any two of these counts should be less than 10, and the difference between the highest and low-
est counts should be less than 15. Both conditions are satisfied in this case. The total count from the first 
side is 99 and that from the second is 115. Their average is 107. Now let us reason from this number to 
the final result before arriving at a general formula.

The 107 WBCs were all present in the four corner squares. Because each of those squares has a 
volume of 0.1 mm3  (1 mm * 1 mm * 0.1 mm), the total volume is 0.4 mm3  (4 * 0.1 mm3). Thus, 
the total count is 267.5 per mm3  (107 , 0.4 mm3). To correct for the 1:20 dilution, however, this value 
must be multiplied by 20, giving a final result of 5350 WBCs per mm3 (or per μL).

Here is the formula:

cell count (per mm3) =
number of cells counted

total volume (mm3)
* dilution factor

An equivalent formula that bypasses calculating the total volume first is

cell count (per mm3) =
number of cells counted *

1
depth (mm)

total area (mm2)
* dilution factor

Enumerating Erythrocytes
To count red blood cells, whole blood is diluted 1:200 in 0.85% (w/v) saline both to prevent lysis and to 
bring the number of cells into a range suitable for counting. After the hemacytometer is charged with 
the diluted blood, cells are counted microscopically in the five squares labeled “R.”

Equation 1 is used to calculate the final result, but the total volume and dilution factor have different 
values than do their counterparts in leukocyte counting. On each side of the hemacytometer, the total 
area is 0.2 mm2 (5 * 0.04 mm2), and the dilution factor is 200.

Enumerating Platelets
To count platelets, whole blood is diluted 1:100. On the hemacytometer, cells are counted in all 25 squares 
within the central square, which means that the total volume is 0.1 mm3 (0.04 mm2 * 25 * 0.1 mm). 
Again, Equation 1 is used to calculate the final result.

Shortcuts to the Calculated Final Cell Count
If we perform enumeration of WBCs, RBCs, and platelets exactly in accord with standard procedure,  
as outlined above, then we can simply multiply the absolute number of cells counted on the hemacy-
tometer by a single factor to give the same final count as Equation 1 would have given. If, however, any 
part of the procedure is not standard, we must use Equation 1.

If WBCs are counted in all four corner squares and if the dilution is 1:20, then the raw count can be 
multiplied by 50 to give the final count. For example, if the raw count is 100, then multiplying it by 50 
gives a final count of 5000 WBCs per mm3. This is the same as Equation 1 returns:

WBC count (per mm3) =
100 WBCs

0.4 mm3 * 20 = 5000 WBCs per mm3

For RBCs, the single factor is 10,000, but only if we count the cells in all five “R” squares and if the 
dilution is 1:200. For platelets, the single factor is 1000, but only if we count the cells in all 25 squares 
within the central square and if the dilution is 1:100. Table 10-1 summarizes the factors and the con-
straints for using them.

 Equation 1
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HeMatoCrit
The hematocrit (Hct) is the volume of whole blood occupied by packed RBCs. To ascertain this value, 
blood is loaded into a capillary tube and centrifuged; the resulting volume taken by the RBCs is expressed 
as a percentage of the total volume. For example, an Hct of 42% means that RBCs take up 42 of every  
100 mL of whole blood. Hct may also be expressed as “L/L.”

erytHroCyte indiCes
For differentiating among anemias and for detecting analytical errors, three simple calculated indices 
were developed long ago. We compute these “RBC indices” from the RBC count, hematocrit, and hemo-
globin (Hb) concentration.

 • Mean cell volume (MCV): the average size of an erythrocyte
 • Mean cell hemoglobin (MCH): the amount of hemoglobin per erythrocyte
 • Mean cell hemoglobin concentration (MCHC): the amount of hemoglobin relative to the 

erythrocyte’s size

Mean Cell Volume (MCV)
MCV is the average volume, in “fL”, of the RBCs. We calculate it using this formula:

MCV (fL) =
Hct (%)

RBC count ( * 106/μL)
* 10

For example, if a blood sample has an Hct of 38% and an RBC count of 4.0 * 106/μL, then the 
MCV is

MCV =
38
4.0

* 10 = 95

The MCV’s unit is “fL” (“femtoliters”), which is 1 * 10-15 liters. To prove this, calculate the  
volume per cell directly, given that (1) RBCs occupy 38% of any volume of this sample of whole blood  
and (2) there are 4.0 * 106 cells in a μL:

MCV =
volume

cell
=

38% of 1 μL

4.0 * 106 cells
=

0.38 * 1 μL

4.0 * 106 cells
= 9.5 * 10-8 μL/cell

The volume of 9.5 * 10-8 μL is equal to 95 fL because 1 μL = 109 fL:

1 μL

109 fL
=

9.5 * 10-8 μL
x

x =
(9.5 * 10-8 μL)(109 fL)

1 μL
= 95 fL

Mean Cell Hemoglobin (MCH)
The concentration of Hb, which is the oxygen-carrying protein in RBCs and which renders them red, 
is usually expressed as “g/dL” but may also appear as “g/L.” MCH is the average mass, in “pg,” of hemo-
globin in an individual RBC. We calculate it using this formula:

MCH (pg) =
Hb (g/dL)

RBC count (*106/μL)
* 10

H table 10-1  Single Factors for Calculating Cell Counts Obtained by Standard Procedure

Cell single Factor Constraints

WBC 50 Cells must be counted in all four corner squares. Dilution must be 1:20.

RBC 10,000 Cells must be counted in all five “R” squares. Dilution must be 1:200.

Platelets 1000 Cells must be counted in all 25 squares within central square. Dilution must be 1:100.

Equation 2

Equation 3
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Mean Cell Hemoglobin Concentration (MCHC)
Finally, MCHC is the average concentration, in “g/dL,” of hemoglobin in the RBCs themselves. We 
calculate it using this formula:

MCHC (g/dL) =
Hb (g/dL)

Hct (%)
* 100

rule oF tHree
The “Rule of Three” is a simple but effective check on the integrity of the measurements and calculations 
that went into the hemoglobin concentration, hematocrit, and RBC count:

 3 * [Hb] = Hct { 3

 3 * RBC count = [Hb]

This rule applies only to normocytic, normochromic erythrocytes. Let us consider an example.

actual expected (From rule of three)

RBC count (*  106 cells/μl)  4.0

hb concentration (g/dl) 12.4 3 * 4.0 = 12

Hct (%) 36.9 3 * 12.4 = 37.2

RBC Volume (fL)

F
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SD (“Width”)
MCV

RDW = SD ÷ MCV

When a set of results fails the Rule of Three, an investigation should follow immediately. If the 
failure is not due to a pathological condition, then the cause is probably interference in the specimen or 
a preanalytical, analytical, or postanalytical error.

red-Cell distribution WidtH
Red-cell distribution width, abbreviated “RDW,” is a measure of the variation in RBC size in a given 
blood specimen. It answers this question: how much of the MCV does one standard deviation encom-
pass? The formula, therefore, is

RDW (%) =
standard deviation of MCV

MCV
* 100%

The normal range is 11–15%. A result above this range indicates anisocytosis (a state of unequal 
RBC sizes), which raises the possibility of several disorders. Moreover, the RDW and the MCV together 
can help diagnose deficiencies of iron, vitamin B12, and folate.

The word width in the name does not refer to the width of the cells themselves. Rather, it refers to 
the width of the distribution curve that relates RBC volume to the frequency of occurrence in a given 
blood specimen:

Equation 4
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retiCuloCyte ProduCtion index
Reticulocytes are immature RBCs that contain residual ribosomal RNA that one can stain and view 
under a microscope. Because reticulocytes represent the final stage in the maturation of RBCs, counting 
them is a simple means of monitoring the effectiveness of erythrocyte production.

When hematopoiesis is normal, reticulocytes account for about 1% (40,000950,000 cells/μL) of the 
peripheral RBC population. An increase in this percentage, of course, can follow from an increase in the 
number of circulating reticulocytes, but it can also result from a decrease in the number of circulating 
RBCs. Therefore, to use the reticulocyte count as a measure of erythropoiesis, we must correct it for the 
severity of anemia that may be present.

There are two ways to carry out this correction. The first way is to calculate the reticulocyte index 
(RI), which adjusts the count to the patient’s actual hematocrit:

Reticulocyte Index = Reticulocyte Count (%) *
Actual Hct
Normal Hct

The normal hematocrit is taken to be 45. The second way to correct it is to convert the reticulocyte per-
centage into an absolute count for comparison with the normal count:

Absolute Reticulocyte Count = (% Reticulocytes) * (Actual RBC Count)

Consider this example. An anemic patient’s hematocrit is 23%, reticulocyte count 15%, and RBC 
count 2.6 * 106 cells/μL. Equation 5 gives the reticulocyte index as

RI = 15% *
23
45

= 8%

Equation 6 returns the absolute count:

Absolute Count = 15% * (2.6 * 106) = 390,000

If we take 50,000 as normal, then our patient’s absolute count is 7.8 times higher—about the same multiple 
as the RI:

390,000
50,000

= 8

When erythropoiesis is being stimulated, as in anemia, maturation time for reticulocytes in the 
bone marrow goes down, and immature reticulocytes are released earlier into the bloodstream, where 
they circulate and continue maturing. The result of this early release is an increase in the reticulocyte 
count, although what that increase represents is a premature shifting into the circulation rather than an 
acceleration of RBC production in the marrow. Reticulocytes in circulation normally mature (i.e., lose 
their RNA) in 24 hours. But when anemia is present, the hematocrit falls, shifting occurs sooner, and 
maturation time in the circulation rises.

The blood of an anemic patient may have circulating reticulocytes that take 2 or 3 days to mature. 
Therefore, some of them will be counted on more than one day. To correct for this, we divide the RI by 
the expected maturation time, which we glean from Table 10-2 H. The quotient is called the reticulo-
cyte production index (RPI):

Reticulocyte Production Index =
Reticulocyte Index

Expected Maturation Time

Equation 5

Equation 6

Equation 7

H table 10-2 Correction Factors for RPI Calculation

Hct (%) expected Maturation time (days)

36–45 1.0

26–35 1.5

16–25 2.0

…15 2.5
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For our anemic patient in the example above (Hct = 23%, reticulocyte count = 15%,
RBC count = 2.6 * 106, RI = 8%), the RPI value is

RPI =
8%
2.0

= 4%

We get the same multiple by comparing absolute counts:¢390,000
2.0

≤
50,000

= 4

The principal reason for obtaining an RPI is assessment of the marrow’s response to the patient’s 
anemia. In this case, what the value of 4 means is that the patient’s RBC production is about four 
times normal. In other words, erythropoiesis is proceeding about four times faster than it would 
be in the absence of anemia. In general, an RPI value greater than 3 indicates an adequate response, 
implying that the marrow is well supplied with raw materials, the kidneys are releasing erythropoietin 
appropriately, and the cause of the anemia is probably RBC loss. By contrast, an RPI value less than 2 
suggests ineffective erythropoiesis, such as that occurring in anemia of chronic disease, renal failure, 
or iron deficiency.

enuMerating retiCuloCytes
We can manually count reticulocytes by the slide method or by use of a Miller disk. The slide method 
entails incubating whole blood with new methylene blue, preparing a smear, letting it dry, and then 
counting under oil immersion. We count 1000 RBCs while noting the number of reticulocytes. The 
subsequent calculation is straightforward:

Reticulocyte Percentage =
Number of Reticulocytes per 1000 RBCs

1000 RBCs
* 100%

For example, if we see 14 reticulocytes per 1000 RBCs, then the reticulocyte percentage is

Reticulocyte Percentage =
14

1000 RBCs
* 100% = 1.4%

The Miller disk is a special glass insert for the microscope ocular, and its use in counting reticulo-
cytes improves the precision. The disk comprises two squares (Figure 10-2 n), the smaller one having 
one-ninth the area of the larger.

 Equation 8

n Figure 10-2 The Miller disk insert for counting reticulocytes.
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In consecutive fields, we count RBCs in the smaller square while counting the reticulocytes in both 
squares. At the end, we calculate the number of reticulocytes as a percentage of the total RBCs:

Reticulocyte Percentage =
Number of Reticulocytes in Both Squares

Number of RBCs in Smaller Square * 9
* 100%

osMotiC Fragility
When an RBC is immersed in a hypotonic solution, water moves into the cell by osmosis in order 
to achieve a concentration equilibrium across the membrane. As this process goes forward, the 
cell swells until it is no longer able to withstand the pressure, at which point it lyses. Spherocytes, 
which we see in hereditary spherocytosis (HS) and a few other conditions, are spherical RBCs that 
have a lower ratio of surface area to volume than do normal biconcave RBCs. Consequently, they 
have a greater osmotic fragility and lyse at a higher concentration of NaCl. By contrast, target 
cells, which we see in thalassemia and iron-deficiency anemia, have a lower osmotic fragility, 
which is to say that they lyse at a lower concentration of NaCl than do normal RBCs. Therefore, we 
use the test for osmotic fragility to confirm the presence of spherocytes and target cells. This test 
does not, however, differentiate HS from other causes of spherocytosis or thalassemia from iron- 
deficiency anemia.

To perform the osmotic fragility test, we prepare a series of hypotonic solutions, ranging in concen-
tration from 0% to 0.85% NaCl (w/v). To each we add a small amount of heparin-anticoagulated blood. 
After a room-temperature incubation, each solution is centrifuged, and the absorbance of the supernate 
at 540 nm is measured. This wavelength represents a peak in the absorption spectrum of hemoglobin, 
which RBCs release into solution as they lyse. The patient’s specimen and a normal specimen are run in 
parallel so that a comparison of the results becomes possible.

For each tube, we calculate the percent lysis from this equation:

Percent lysis =
Atube - A0.85%

A0% - A0.85%

We plot the percent lysis as a function of NaCl concentration, giving a curve that is roughly 
 sigmoidal (Figure 10-3 n). For a normal specimen, lysing begins at about 0.50% NaCl and is complete 
by 0.30%. If a specimen’s curve has shifted to the right of the normal curve (Figure 10-3B), then its RBCs 
lysed at higher NaCl concentrations; thus, the specimen’s RBCs are more osmotically fragile, a finding 

Equation 9

n Figure 10-3 Typical osmotic fragility curves for (a) thalassemia and (b) hereditary 
spherocytosis. The normal range lies between the two blue curves.
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consistent with the presence of spherocytes. However, if the curve has shifted left (Figure 10-3A), then 
its RBCs lysed at lower NaCl concentrations, indicating lower osmotic fragility, which is consistent with 
the presence of target cells.

Some patients with mild HS will show normal results in the osmotic fragility test, as described above, 
when the blood used in the procedure is fresh. Revealing a difference between normal and abnormal 
results becomes possible by incubating the blood at 37°C for 24 hours before running the test. Dur-
ing this longer incubation, spherocytes become more susceptible to lysis. Increased osmotic fragility 
after the 24-hour incubation is characteristic of mild HS, whereas normal fragility nearly rules out HS 
as a diagnosis.

international norMalized ratio
We employ the prothrombin time (PT) to screen for certain coagulation disorders and to monitor 
anticoagulant therapy. In short, it represents the amount of time required for a plasma specimen to clot 
in vitro when mixed with a commercial reagent containing thromboplastin, which initiates the coagula-
tion cascade. The reference range for this test is 10–13 seconds.

Because of marked variation in the commercial preparations of thromboplastin used by 
 laboratories around the world, as well as differences in instrumentation and controls, the PT result 
is usually standardized. This is especially important for a patient who takes a vitamin K antago-
nist (e.g., warfarin) and has this routine test run at various laboratories, depending on his or her 
 whereabouts at the time. Standardization gives what is known as the International Normalized 
Ratio (INR):

INR = ¢PTpatient

PTnormal
≤ISI

where PTpatient is the PT for the patient (in “seconds”), PTnormal is the geometric mean of normal PT 
values (in “seconds”), and ISI is the International Sensitivity Index. ISI is a laboratory standard for 
 thromboplastins used to determine the PT. The geometric mean is used rather than the arithmetic mean 
because the INR relies on a linear relationship between logarithms. For more information on geometric 
means, consult Appendix 8-7 on the website.

For a normal patient not on anticoagulant therapy, the INR is about 1.0 (0.8–1.2). For a patient 
on warfarin, the INR should fall between 2.0 and 3.0, which means that the patient’s clotting 
time is about two or three times normal. An INR of 5 or greater implies an unacceptably high risk 
of bleeding.

In patients on anticoagulant therapy, the ISI represents the average sensitivity, or responsiveness, 
of a given thromboplastin preparation to the deficiency of clotting factors being induced by the drug. It 
attempts to correct the prothrombin ratio for the variations mentioned above. The reagent manufacturer 
calculates the ISI for every lot of thromboplastin reagent, and automated instruments request this value 
as input from the user.

The ISI standardization system is based on the first World Health Organization (WHO) interna-
tional reference preparation of thromboplastin. That preparation, called “67/40,” was established in 1976 
but is no longer available; its ISI value was defined as 1.0. Each new reference preparation of thrombo-
plastin issued by the WHO was, and is, calibrated against the previous one—a process that ultimately 
compares it with 67/40. Likewise, commercial reagents are calibrated against those reference prepara-
tions and, therefore, also against 67/40.

Theoretically, the value of the INR represents what the prothrombin ratio would have been if the 
WHO reference preparation of thromboplastin had been used as the reagent and if the manual tech-
nique had been employed. A thromboplastin reagent is considered highly sensitive if its ISI is about 1.0. 
A less sensitive preparation would have a greater ISI. For an explanation of how the ISI is calculated, see 
Appendix 10-1 on the website.

A thromboplastin preparation selected for use should have an ISI close to 1.0. The reason for this is 
that a less sensitive reagent—one with a higher ISI—can return an INR value outside the target range of 
2.0–3.0  (Table 10-3 H). When the reagent is less sensitive, the dose of the drug required to achieve a PT 
ratio in the middle of the target range (e.g., 2.5) would have to be markedly higher than the dose required 

appendix 8-7
“Arithmetic Means,  
geometric means, and  
log-Normal  Distributions”
www.myhealthprofessions.kit.com

appendix 10-1
“International Sensitivity Index”
www.myhealthprofessions.kit.com
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when the reagent is sensitive. Consequently, the clinician might raise the dose and unintentionally impair 
the patient’s clotting response to a dangerous degree.

CorreCtion oF WbC Count For nuCleated rbCs
Nucleated RBCs (nRBCs) represent the stage in the erythrocyte maturation sequence right before that 
of reticulocytes. In fact, an nRBC, also called a metarubricyte or orthochromatic normoblast, expels 
its nucleus to become a reticulocyte. Though usually seen only in the bone marrow, nRBCs can appear 
in the blood of patients who have bone marrow disorders and in the blood of normal infants for a few 
days after birth. We may inadvertently include nRBCs among WBCs whether the method is manual or 
automated (the dilution medium in the manual technique does not lyse them). Therefore, their presence 
may falsely elevate the WBC count.

To correct for the presence of nRBCs, we identify and enumerate them in a blood smear. Then, the 
number of nRBCs goes into this formula:

 corrected WBC count =
uncorrected WBC count

1 +
nRBCs per 100 WBCs

100 WBCs

 =
uncorrected WBC count * 100

100 + nRBCs per 100 WBCs

For example, if the uncorrected WBC count is 14,500 and if 16 nRBCs were seen per 100 WBCs, then 
the corrected WBC count is

corrected WBC count =
14,500 * 100

100 + 16
=

1,450,000
116

= 12,500

The reasoning behind this formula is straightforward. The denominator, which is

1 +
nRBCs per 100 WBCs

100 WBCs

reflects the fractional increase in the WBC count due to nRBCs. If there are no nRBCS, then this denomi-
nator is simply “1,” and the corrected count is the same as the uncorrected count. However, if there are, say, 
200 nRBCs per 100 WBCs, then the denominator becomes

1 +
200
100

= 3

This means that the uncorrected count is actually three times higher than it would have been 
in the  absence of nRBCs. Therefore, it must be divided by three to bring it back down to the 
correct value.

H table 10-3 Influence of ISI on INR.

observed Prothrombin  
time ratio ¢Ptpatient

Ptnormal
≤ international normalized ratio (inr)

isi = 1.0 isi = 1.4 isi = 1.8

1.30 1.30 1.44 1.60

1.72 1.72 2.14 2.65

2.16 2.16 2.94 4.00

2.95 2.95 4.55 7.01

Equation 11
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Summary
 7. Reticulocytes are immature RBCs that contain residual ribo-

somal RNA that one can stain and view under a microscope.
 8. When hematopoiesis is normal, reticulocytes account for 

about 1% (40,000950,000 cells/μl) of the peripheral RBC 
population.

 9. When anemia is present, the reticulocyte count rises as the 
RBC count falls (if kidney and marrow function are normal), 
pushing the reticulocyte percentage up. Therefore, the 
count must be corrected for this misleading increase.

 10. The reticulocyte index (RI) corrects the reticulocyte count 
for the presence of anemia (the normal hematocrit is taken 
to be 45):

Reticulocyte Index = Reticulocyte Count *
Actual Hct
Normal Hct

 11. The reticulocyte production index (RPI) corrects the reticu-
locyte count for the early release of reticulocytes into the 
blood. The formula is used in conjunction with a table of 
predetermined values:

Reticulocyte
Production Index

=
Reticulocyte Index

Expected Maturation Time

 1. We carry out manual enumeration of blood cells microscop-
ically on a hemacytometer, which is a ruled glass platform 
subdivided into squares of known dimensions.

 2. WBCs are counted in the four squares labeled “W,” after 
1:20 dilution of the blood. The total volume of the square is 
0.4 mm3. We count RBCs in the five squares labeled “R,” after 
1:200 dilution of the blood. The total volume of the squares is 
0.2 mm3. We count platelets in all 25 squares within the cen-
tral square. The total volume is 0.1 mm3. We then calculate 
the cell count from either of these two equations:

cell count (per mm3) =
number of cells counted

total volume (mm3)

* dilution factor

cell count
(per mm3)

=
number of cells counted *

1
depth (mm)

total area (mm2)

* dilution factor

 3. The hematocrit (Hct) is the volume of whole blood occu-
pied by packed RBCs. We express the volume taken by the 
RBCs as a percentage of the total blood volume.

 4. There are three calculated RBC indices used for differenti-
ating among anemias and for detecting analytical errors:
(a)   Mean cell volume (MCV), the average size of an eryth-

rocyte

MCV (fl) =
Hct (%)

RBC count (*  106/μl)
* 10

(b)   Mean cell hemoglobin (MCH), the amount of hemo-
globin per erythrocyte

MCH (pg) =
Hb (g/dl)

RBC count (*  106/μl)
* 10

(c)   Mean cell hemoglobin concentration (MCHC), the 
amount of hemoglobin relative to the erythrocyte’s size

MCHC (g/dl) =
Hb (g/dl)

Hct (%)
* 100

 5. The “Rule of Three” is a check on the integrity of the mea-
surements and calculations that went into the hemoglobin 
concentration, hematocrit, and RBC count. It applies only 
to normocytic, normochromic erythrocytes:

 3 * [Hb] = Hct

 3 * RBC count = [Hb]

 6. The red-cell distribution width (RDW) is a measure of the 
variation in RBC size in a given blood specimen. The normal 
range is 11–15%:

RDW (%) =
standard deviation of MCV

MCV
* 100

 12. There are two methods for counting reticulocytes. The slide 
method entails incubating whole blood with new methy-
lene blue, preparing a smear, letting it dry, and then count-
ing under oil immersion. With this method, one counts 
1000 RBCs while noting the number of reticulocytes:

Reticulocyte
Percentage

=
Number of Reticulocytes per 1000 RBCs

1000 RBCs

* 100%

 13. The second method for counting reticulocytes involves the 
Miller disk, a special glass insert for the microscope ocular 
that comprises two squares, the smaller one having one-
ninth the area of the larger. In consecutive fields, we count 
RBCs in the smaller square while counting the reticulocytes 
in both squares. At the end, we calculate the number of 
reticulocytes as a percentage of the total RBCs:

Reticulocyte
Percentage

=
Number of Reticulocytes in Both Squares

Number of RBCs in Smaller Square * 9

* 100%

 14. The test for osmotic fragility confirms the presence of 
spherocytes, which lyse at higher NaCl concentrations 
than do normal RBCs, and target cells, which lyse at lower 

Hct (%)
expected Maturation  

time (days)

36–45 1.0

26–35 1.5

16–25 2.0

…15 2.5
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  where PTpatient is the PT for the patient (in “seconds”), 
PTnormal is the geometric mean of normal PT values (in “sec-
onds”), and ISI is the International Sensitivity Index.

 17. The ISI represents the average sensitivity, or responsiveness, 
of a given thromboplastin preparation to the deficiency of 
clotting factors being induced by an anticoagulant. The 
manufacturer calculates the ISI for every lot of reagent. As 
sensitivity rises, ISI falls.

 18. The WBC count must be corrected for the presence of 
nucleated RBCs (nRBCs), which can appear in the periph-
eral blood of patients who have bone marrow disorders 
and of normal infants for a few days after birth:

 corrected WBC count =
uncorrected WBC count

1 +
nRBCs per 100 WBCs

100 WBCs

 =
uncorrected WBC count * 100

100 + nRBCs per 100 WBCs

concentrations. Heparin-anticoagulated blood is added to 
a series of hypotonic solutions (0–0.85% NaCl). After cen-
trifugation, the A540 of each supernate is measured and the 
percent lysis is calculated:

Percent lysis =
Atube - A0.85%

A0% - A0.85%

 15. The percent lysis is then plotted against NaCl concentration. 
Right-shifting relative to the normal curve indicates greater 
osmotic fragility, which is consistent with the presence of 
spherocytes. left-shifting indicates lower osmotic fragility, 
which is consistent with the presence of target cells.

 16. The International Normalized Ratio (INR) corrects pro-
thrombin-time results for variations among laboratories, 
instruments, thromboplastin preparations, and so forth. 
The reference ranges for this test are 0.8–1.2 if the patient 
is not on anticoagulant therapy and 2.0–3.0 if the patient 
is taking an anticoagulant:

INR = ¢PTpatient

PTnormal
≤ISI

Practice and Contextual Problems
 1. (LO 1) An automated cel l  counter found 

6620 WBCs per mm3 in a particular blood sample. How 
many WBCs, therefore, would be present in a space mea-
suring 1 mm * 1.5 mm * 0.1 mm?

 2. (LO 1) The RBCs are counted in a blood specimen accord-
ing to the standard procedure outlined in the main text. 
If a total of 200 RBCs are found in the five squares on one 
side of the hemacytometer, what is the number of RBCs 
per cubic millimeter of blood?

 3. (LO 1) The WBCs are counted in a blood specimen accord-
ing to the standard procedure outlined in the main text. If 
a total of 57 WBCs are counted in the four corner squares 
on one side of the hemacytometer, what is the number of 
WBCs per cubic millimeter of blood?

 4. (LO 1) A blood specimen is suspected of having a WBC 
count of about 20,000 per mm3. What dilution would 
bring the count to 50 cells per “W”-labeled square on the 
hemacytometer?

 5. (LO 1) The RBCs are counted in a blood specimen according 
to the standard procedure outlined in the main text, except 
that the dilution is 100-fold. If a total of 166 RBCs are found 
in the five squares on one side of the hemacytometer, what 
is the number of RBCs per cubic millimeter of blood?

 6. (LO 1) The WBCs are counted in a blood specimen accord-
ing to the standard procedure outlined in the main text, 
except that the dilution is 10-fold. If a total of 36 WBCs 
are counted in the four corner squares on one side of the 
hemacytometer, what is the number of WBCs per cubic 
millimeter of blood?

 7. (LO 2) Calculate the MCV of a blood specimen with 
Hct = 38% and RBC count = 4.7 * 106/mm3.

 8. (LO 2) Calculate the MCV of a blood specimen with 
Hct = 44% and RBC count = 5.1 * 106/mm3.

 9. (LO 2) Calculate the MCV of a blood specimen with 
Hct = 47% and RBC count = 6.0 * 1012/L.

 10. (LO 2) Calculate the MCH of a blood specimen with 
Hb = 15.2 g/dL and RBC count = 5.4 * 106/mm3.

 11. (LO 2) Calculate the MCHC of a blood specimen with 
Hb = 13.9 g/dL and Hct = 41%.

 12. (LO 2) If Hct is expressed as “L/L,” how does Equation 2 
change?

 13. (LO 8) Complete the following table.

PTnorm PTpatient isi inr

12 21 1.22

12 16 1.91

12 21 2.0

12 24 1.5

11 19 1.35

11 30 1.1

11 23 2.2

11 10 1.0
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 14. (LO 1) The platelets are counted in a blood specimen 
according to the standard procedure outlined in the main 
text. If a total of 91 platelets are found in the 25 squares 
on one side of the hemacytometer, what is the number of 
platelets per cubic millimeter of blood?

 15. (LO 1) The platelets are counted in a blood speci-
men according to the standard procedure outlined in 
the main text. If a total of 137 platelets are counted 
in the 25 squares on one side of the hemacytometer, 
what is the number of platelets per cubic millimeter of 
blood?

 16. (LO 1) The platelets are counted in a blood speci-
men according to the standard procedure outlined in 
the main text. If a total of 208 platelets are counted 
in the 25 squares on one side of the hemacytometer, 
what is the number of platelets per cubic millimeter of 
blood?

 17. (LO 6) Calculate the reticulocyte percentage from each of 
the following raw counts obtained by the slide method.

reticulocytes in 
both squares

rbCs in smaller 
square

reticulocyte 
Percentage

 40 260

 18 194

105 297

 26 174

 88 213

reticulocyte 
index (%)

Hematocrit 
(%)

reticulocyte  
Production index (%)

1.7 32

9.0 28

2.0 25

0.9 30

7.8 18

reticulocytes  
per 1000 rbCs

reticulocyte  
Percentage

 37

106

  9

 22

 64

rbC Count 
(:  106 cells/�l)

Hb Concentration 
(g/dl)

Hematocrit  
(%)

(a) 4.9 14.6 42.8

(b) 6.0 17.9 52.0

(c) 3.7 11.4 39.2

(d) 5.1 15.1 47.1

(e) 4.6 14.0 40.5

 18. (LO 6) Calculate the reticulocyte percentage from each of 
the following raw counts obtained from a Miller disk.

 19. (LO 4) Calculate the reticulocyte index for each of the fol-
lowing specimens.

reticulocyte 
Count (%) Hematocrit (%)

reticulocyte 
index (%)

 3.3 31

10.0 28

 2.6 19

 8.3 21

1.1 35

 20. (LO 5) Calculate the reticulocyte production index for each 
of the following specimens.

 21. (LO 3) Tell whether each of the following sets of data satis-
fies the Rule of Three.

 22. (LO 7) Plot the following osmotic fragility data and decide 
whether the patient results are consistent with the pres-
ence of spherocytes.

Percent lysis

naCl  
Concentration (%) normal specimen Patient specimen

0.85 0 0

0.75 0 0

0.65 0 0

0.60 0 1

0.55 0 30

0.50 2 75

0.45 20 96

0.40 60 99

0.35 95 100

0.30 98 100

0.20 100 100

0.10 100 100

 23. (LO 10) Correct each of the following WBC counts for the 
presence of nRBCs.

uncorrected  
WbC Count 
(cells/μl)

nrbCs  
per 100 
WbCs

Corrected  
WbC Count 
(cells/μl)

(a) 18,500 14

(b) 5600 28

(c) 2200 47
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 24. (LO 1) Cells were counted by standard procedure on a 
hemacytometer. From the following raw counts, calculate 
the final counts.

 25. (LO 1) Cells were counted on a hemacytometer but with 
nonstandard dilutions. From the following raw counts, 
 calculate the final counts.

raw Count Final Count

rbCs  
(total in 5 squares on 

one side)

WbCs  
(total in 4 corner 

squares on one side)

Platelets  
(total in all 25 squares 

on one side)
rbCs 

(cells/mm3)
WbCs 

(cells/mm3)
Platelets 

(cells/mm3)

(a) 550 (dil. = 1:300) 200 (dil. = 1:30) 80 (dil. = 1:50)

(b) 360 (dil. = 1:100) 310 (dil. = 1:40) 95 (dil. = 1:50)

(c) 242 (dil. = 1:50) 95 (dil. = 1:10) 427 (dil. = 1:200)

(d) 498 (dil. = 1:400) 400 (dil. = 1:30) 341 (dil. = 1:200)

raw Count Final Count

rbCs  
(total in 5 squares 

on one side)

WbCs  
(total in 4 corner 
squares on one 

side)

Platelets  
(total in  

all 25 squares on 
one side)

rbCs 
(cells/mm3)

WbCs 
(cells/mm3)

Platelets 
(cells/mm3)

(a) 193 72 136

(b) 467 112 200

(c) 250 400 61

(d) 590 231 277

Go to www.myhealthprofessionskit.com <http://www.myhealthprofessionskit.com/> to access the Com-
panion Website created for this textbook. Simply select “Clinical Laboratory Science” from the choice of 
disciplines. Find this book and log in using your username and password to access additional practice 
problems, answers to the practice and contextual problems, additional information, and more
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To help ensure the accuracy of laboratory results, we employ quality control, a process for verifying 
the performance characteristics of a testing system, which includes reagents, electronics, and robotics. 
In short, the process consists of running special quality-control materials in the test we are checking 
and then comparing the results with previous results in which we have confidence. If the current 
results are acceptably close to the previous results, we conclude that our testing system is functioning 
properly and that we may proceed to run patient specimens. If, however, the current results are too 
far from the previous results, we suspect a malfunction somewhere in the analysis, in which case we 
do not run patient samples until the situation has been rectified and acceptable control results have 
been obtained.

The materials we use to generate quality control data are called controls. We might purchase these 
controls from vendors or make them ourselves in the laboratory. In either case, controls should simulate, 
both chemically and physically, the patient specimens we typically run in the test.

The Clinical Laboratory Improvement Act (Sect. 493.1256) requires laboratories to run, at least 
once per day, two controls at different concentrations when the assay is quantitative, and a positive and 
negative control when qualitative. It is customary to run controls with two or three different levels of the 
result, such as low, medium, and high. For example, controls for glucose might have concentrations of 
30, 90, and 250 mg/dL because the reference range for glucose in healthy adults is 70–100 mg/dL. Thus, 
running these three controls would reveal whether our method for quantifying glucose is reliable below, 
within, and above the reference range.

But how do we decide whether the actual result from a given control is acceptably close to the pre-
vious result? Chapter 8 discusses the role of the standard deviation in the acceptance and rejection of 
quality control runs (see Figure 8-3); those two paragraphs are reproduced here.

Suppose, for example, that your laboratory runs a test for ferritin in serum. Before running any 
patient specimens, you must ensure that your analytical method is functioning properly. You 
run your ferritin control solution and compare the result (147 ng/mL) to the mean (151 mg/dL)  
for the 60 other ferritin control results that have been recorded for the previous 6 weeks. If 
the standard deviation of those control results is 3 ng/mL, then 68% of the data fall between 
148 and 154 ng/mL, or between x - 1s and x + 1s (i.e., between 151 - 3 and 151 + 3).  
Moreover, 95% of the data would fall between 145 and 157 ng/mL, or between x - 2s and 
x + 2s (i.e., between 151 - 6 and 151 + 6).

Your result of 147 ng/mL falls between one and two standard deviations below the mean. 
At this point, the question is whether your result is close enough to the mean to conclude 
that the analytical method is functioning properly and, therefore, whether to proceed with 
patient specimens. Laboratories have policies governing this decision based on the deviation 
of a given result from the mean. If your laboratory’s established limit for the ferritin assay  
is {  2s, then your result of 147 ng/mL passes the standard-deviation test, and you proceed to 
run patient samples. However, if the limit is {  1s, then your result fails, and you do not run 
patient samples until the malfunction is rectified.

A control result that falls within the defined limits of acceptability is said to be in range or in con-
trol, whereas a result that falls outside those limits is said to be out of range or out of control.

Levey-Jennings Charts
To simplify the review of quality control data, most clinical laboratories plot them on a Levey-Jennings 
chart, which is a graphical representation of the results over a certain period of time. A Levey-Jennings 
chart makes it easy to spot outliers, trends, and shifts in the data, with the ultimate goal of showing 
whether an analytical method is working properly. Consider, for example, 20 consecutive runs of a 
glucose control (Figure 11-1 n).

The 20 hypothetical results are averaged (87.8 mg/dL) and the standard deviation is calculated  
(2.6 mg/dL). Then the data are plotted on a chart with seven horizontal lines, one indicating the mean 
and the other six indicating the values at 1 SD, 2 SD, and 3 SD above and below the mean. As Figure 11-1 
illustrates, it takes only a quick glance at the chart to see that all 20 results fall within two standard devia-
tions of the mean (x { 2s).

Typically, we examine the chart for outliers, which are points that lie outside the acceptable 
range (Figure 11-2A n), whether that range is x { 1s, x { 2s, or x { 3s. We also look for trends. 
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n Figure 11-2 Hypothetical Levey-Jennings chart showing  
(A) an outlier, (B) a trend, and (C) a shift.
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n Figure 11-1 A typical Levey-Jennings chart. All results for 20 consecutive runs 
are within 2 SD of the mean (x { 2s).
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A trend is a gradual movement in one direction, either upward or downward, by a set of six or more 
consecutive data points (Figure 11-2B). Finally, we look for shifts, an abrupt move in which six or 
more consecutive data points all occur above or below the mean (Figure 11-2C). When one of these 
aberrations appears on a Levey-Jennings chart, there is an investigation to search for an incipient 
problem in the assay.

Westgard MuLtiruLes
This single rule that control values must fall within two standard deviations of the mean (x { 2s) suc-
ceeds in detecting error. However, because the rule is also rather rigid, it can trigger false alarms that 
cause rejection of acceptable runs and waste the laboratory’s time and money.

To lower the rate of false rejection, we can widen the control limits to x { 3s. This change, however, 
also lowers the rate of error detection. Single rules often force an unacceptable compromise between 
error detection and false rejection. Consequently, systems of multiple rules, or multirules, have been 
developed to keep the rate of error detection high and the rate of false rejection low. The Westgard system 
of multirules is perhaps the most commonly used in clinical laboratories. The following section defines 
each Westgard rule and depicts it in a Levey-Jennings chart. Keep in mind, however, that these multirules 
are most successful when we use two control materials in a run. When we use three control materials, 
other multirules may be superior (see the next section). Figure 11-3 n summarizes the decision criteria 
for the acceptance and rejection of a run.

 Rule 13s. One data point falls outside the range x { 3s. The run is rejected.
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 Rule 12s. One data point falls outside the range x { 2s. This rule is only a warning that we should exam-
ine the control data in light of the other rules.

 Rule 22s. Two consecutive data points, from the same control material, exceed x { 2s but not x { 3s. 
The two points must lie on the same side of the mean. This rule also applies across two different control 
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levels in corresponding runs, that is, when one result from each of two different controls exceeds x { 2s. 
In either case, the run is rejected.
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 Rule R4s. The difference between two consecutive data points is at least 4 SD, with one data point lying 
above x + 2s and another below x - 2s. This rule also applies across two different control levels in cor-
responding runs, that is, when the result from one of two different controls is greater than x + 2s and the 
other is less than x - 2s. In either case, the run is rejected.
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 Rule 41s. Four consecutive data points exceed x { 1s. All four points lie on the same side of the mean. 
This rule also applies across two different control levels, that is, when two consecutive corresponding runs 
of two different controls together satisfy these conditions. In either case, the run is rejected.
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MuLtiruLes For three ControLs
For three controls, we have multirules that are preferable to those for two controls. There are various 
rules and combinations of rules suitable for three controls. What follows is one such combination.
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Rules 13s   and R4s.  These are the same as they are in the use of two controls, discussed previously.
Rule 2@of@32s.  Two of three control values lie outside the range x { 2s,  on the same side of the mean. 

Violation of this rule triggers rejection of the run.

 Rule 10x . Ten consecutive data points all fall on the same side of the mean. This rule also applies across 
two different control levels in corresponding runs when five consecutive points from one control and 
five from the other satisfy this condition. In either case, the run is rejected.
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Rule 31s.  Three consecutive control values lie outside the range x { 1s,  on the same side of the mean. 
Violation causes rejection.

Rule 6 x.    Six consecutive control values lie on the same side of the mean. Violation causes rejection.
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resoLution oF out-oF-range ControLs
When a control is out of range, the action taken depends on the laboratory’s policies. If the rule being 
violated is 12s, then what sometimes happens is that one repeats the control and, if that result is in range, 
starts running patient specimens. But this practice, however common it is in laboratories, is controver-
sial because it supplants an internal quality-control procedure that has been designed specifically for 
the assay in question to minimize the rate of false rejections and maximize the rate of error detection.

In resolving an out-of-range control result, it is best to stop the testing process, try to identify and 
correct the problem, and then repeat the controls. The error may be due to something as simple as hav-
ing used the wrong control material, or it may have a more serious cause, such as reagent degradation, 
software corruption, or hardware failure. Run patient specimens only after the controls indicate proper 
functioning of the assay.

rationaLe Behind the ruLes
Consider the 12s rule. Because 95% of all the results for a given control fall within the range x { 2s, a 
value outside this range is unlikely. Therefore, a violation of this rule warns us that there may be a mal-
function somewhere in the assay. Even so, 5% of all the results will exceed two standard deviations even 
when the assay is functioning properly. In other words, a control will violate the 12s rule once in every 
20 acceptable runs. If, on suspicion of a false rejection, a laboratory just reruns a control whenever the 
result violates the 12s rule, then they risk missing a true error.

A value outside the wider range of    x { 3s is even more unlikely, given that this range includes 
99.7% of all the results. Therefore, a violation of the 13s rule probably indicates a true error.

Using only the 12s rule generates false alarms at the rate of about 9% when two controls are used and 
14% when three controls are used.1 Using only the 13s rule does lower the risk of falsely rejecting a run but 
it also lowers the rate of error detection. Thus, even though a multirule system (13s/12s/22s/R4s/41s/10x 

) 
is more complex than a single rule (12s or 13s), it offers a better compromise between false rejection and 
error detection. Multirules employ single rules that individually have lower rates of false rejection but 
that collectively raise the rate of error detection.

1Westgard, J. O. (2003). Internal quality control: Planning and implementation strategies. Annals of Clinical Biochemistry, 40, 593–611.
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randoM and systeMatiC error
To determine whether an analytical run is in control or out of control in the Westgard system, use the 
flowchart in Figure 11-3 n .  As Figure 11-3 also shows, though, one major advantage of multirule systems 
is their power to differentiate between random and systematic error.

Random error arises from the normal vicissitudes of observation, which have no inherent pat-
tern; these include variations in reading pipets, electronic noise in instruments, fluctuations in room 
temperature, and so forth. We can minimize random error, or even bring it close to zero, by averaging 
a large number of results.

Systematic error, by contrast, occurs repeatedly and cannot be minimized by averaging because 
all the data are wrong in the same direction. For example, the miscalibration of a pipet might cause 
it to consistently deliver 0.05 mL more than the nominal volume. Similarly, the miscalibration 
of a balance might cause it to consistently read 20 mg less than the true mass. A malfunctioning  
automated cell counter might return an erythrocyte count 15% too high. Figure 11-4 n depicts random 
and systematic error.

Systematic error comes in two varieties: constant and proportional (Figure 11-5 n). Constant 
systematic error is the same regardless of the analyte’s concentration. Consider, for example, a hemo-
globin assay that has a constant systematic error of +3.0 g/dL because the instrument was not prop-
erly zeroed. Observed results of 14.5 and 9.8 g/dL would reflect actual concentrations, respectively, of 
11.5 and 6.8 g/dL. At each value, the difference between the actual and observed concentrations is the 

n Figure 11-4 Systematic error, but not random error, changes the mean.  
Random errors average themselves out to the mean. Systematic errors cannot be 
averaged out.

Random errorRandom error

Systematic error

Observed values True mean

n Figure 11-3 Decision flowchart for the Westgard multirule system.
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same, 3.0 g/dL. Therefore, constant systematic error changes the y-intercept, but not the slope, of the  
regression line.

Proportional systematic error is, not surprisingly, proportional to the analyte’s concentration. 
Consider, for example, an assay that has two steps: the first for extracting the analyte from blood into a 
solvent and the second for quantifying the extracted analyte. If the extraction step pulls only 90% of the 
analyte out of the blood, then an actual concentration of, say, 500 ng/mL in the blood would appear as 
450 ng/mL. Moreover, an actual concentration of, say, 1000 ng/mL in the blood would emerge from 
the assay as 900 ng/mL. At the lower concentration, the difference between the actual and observed 
results is 500 ng/mL - 450 ng/mL, or 50 ng/mL. At the higher concentration, however, the difference 
is 1000 ng/mL - 900 ng/mL, or 100 ng/mL. Thus, each observed result is lower than it should be, not 
by a constant absolute amount but by a constant proportion, 10%. Therefore, proportional systematic 
error changes the slope, but not the y-intercept, of the regression line.

Confirming the presence of constant systematic or proportional systematic error is a matter of 
constructing the confidence intervals for the slope (Chapter 8, Equation 7) and y-intercept (Chapter 8, 
Equation 9). If the 95% confidence interval for the slope includes 1.0, then the deviation probably carries 
little significance because that is the slope of the random-error line. If, however, the interval does not 
include 1.0, then the suspected proportional systematic error might be real.

Similarly, if the 95% confidence interval for the y-intercept includes 0, then the deviation probably 
carries little significance because that is the y-intercept of the random-error line. If, however, the interval 
does not include 0, then the suspected constant systematic error might be real.

n Figure 11-5 Random versus systematic error.

 (a) random error only (dotted black line). The observed and actual concen-
trations agree, and the only error present is random (orange arrow). The 
regression line has slope = 1.0 and y@intercept = 0. Thus, the equation 
of the line is y = 1x + 0.

 (B) Constant systematic error (blue line). The observed concentration is higher 
by a constant amount, regardless of the concentration of Q. Every data 
point on the regression line is too high by the same amount as every other 
data point. The y-intercept has increased whereas the slope has remained 
the same. (Constant error can work in either direction; under different cir-
cumstances, the values might have been lower by a constant amount.)

 (C) Proportional systematic error (pink line). The observed concentration 
is lower by an amount proportional to the concentration of Q. Every 
data point on the regression line is too low by the same proportion as 
every other data point. The slope has decreased whereas the y-intercept 
has remained the same. (Proportional error can work in either direction; 
under different circumstances, the values might have been higher by a 
proportional amount.)

Observed
concentration of Q

Actual concentration of Q

(B) Constant
systematic error

slope � 1.0
y-intercept � 0

(C) Proportional systematic error
slope � 1.0

y-intercept � 0 

(A) Random error
slope � 1.0

y-intercept � 0
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 12. In resolving an out-of-range control result, it is best to stop 
the testing process, try to identify and correct the problem, 
and then repeat the controls.

 13. Even though a multirule system (13s  /12s  /22s  /R4s  /41s  /10x) is 
more complex than a single rule (12s or 13s), it offers a better 
compromise between false rejection and error detection. 
Multirules employ single rules that individually have lower 
rates of false rejection but that collectively raise the rate of 
error detection.

 14. Random error has no inherent pattern. We can minimize it 
by averaging a large number of results.

 15. Systematic error occurs repeatedly and cannot be mini-
mized by averaging.

 16. Constant systematic error is the same regardless of concen-
tration. It changes the y-intercept but not the slope.

 17. Proportional systematic error is proportional to concentra-
tion. It changes the slope but not the y-intercept.

rule 13s One data point falls outside the range x { 3s. 
The run is rejected.

rule 12s One data point falls outside the range x { 2s. 
This rule is only a warning that the control data 
should be examined in light of the other rules.

rule 22s Two consecutive data points, from the same con-
trol material, exceed x { 2s but not x { 3s. 
The two points must lie on the same side of the 
mean. This rule also applies across two different 
control levels in corresponding runs. The run is 
rejected.

rule r4s The difference between two consecutive data 
points is at least 4 SD, with one data point lying 
above x + 2s and another below x - 2s. This 
rule also applies across two different control lev-
els in corresponding runs. The run is rejected.

rule 41s Four consecutive data points exceed x { 1s. 
All four points lie on the same side of the mean. 
This rule also applies across two different control 
levels.

rule 10x Ten consecutive data points all fall on the same 
side of the mean. This rule also applies across 
two different control levels in corresponding 
runs when five consecutive points from one con-
trol and five from the other satisfy this condition. 
The run is rejected.

Rules 13s and R4s These are the same as they are for two 
controls.

Rule 2@of@32s Two of three control values lie outside 
the range x { 2s, on the same side of 
the mean. The run is rejected.

Rule 31s Three consecutive control values lie 
outside the range x { 1s, on the 
same side of the mean. The run is 
rejected.

Rule 6x Six consecutive control values lie on 
the same side of the mean. The run is 
rejected.

Summary
 11. For three controls, there are various multirules. 1. Quality control is a process for verifying the performance 

characteristics of a testing system, which includes reagents, 
electronics, and robotics.

 2. Controls are the material we use to generate quality control 
data. They should simulate, both chemically and physically, 
the patient specimens we typically run in the test.

 3. Laboratories have policies governing the acceptability of 
control data, based on deviation from the mean. A control 
result that falls within the defined limits of acceptability is said 
to be in range or in control, whereas a result that falls outside 
those limits is said to be out of range or out of control.

 4. Levey-Jennings charts graphically represent quality control 
data over a certain period of time. They facilitate the detec-
tion of outliers, trends, and shifts.

 5. An outlier is a point that lies outside the range of 
acceptability.

 6. A trend is a gradual movement in one direction by a set of 
six or more consecutive data points.

 7. A shift is an abrupt move in which six or more consecutive 
data points all fall above or below the mean.

 8. Single rules for accepting control data force a compromise 
between error detection and false rejection.

 9. Multirules for accepting control data keep the rate of error 
detection high and the rate of false rejection low. The most 
commonly used system of multirules in clinical laboratories 
is the Westgard system.

 10. For two controls, there are six basic Westgard multirules.
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Practice and Contextual Problems
 1. (LO 3, 6, 7) Identify the Westgard rules that the following Levey-Jennings charts violate on days 5, 12, and 20. Tell whether 

each violation implies a random or systematic error.
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 2. (LO 3, 6, 7) Identify the Westgard rules the following Levey-Jennings charts violate on days 12 and 20. Tell whether each  
violation implies a random or systematic error.
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 3. (LO 3, 6) Appearing below are data for two levels of cho-
lesterol controls. For each control, calculate the mean and 
standard deviation and construct a Levey-Jennings chart. 
Identify any violations of Westgard rules.

 4. (LO 3, 6) For each analyte in the table, construct a Levey-
Jennings chart and answer the following two questions.  
(1) Is the assay currently in control? If not, identify the 
Westgard violation. (2) Has the assay been in control  
during the rest of the time period covered by the chart? If 
not, identify the Westgard violation.

na+ (mm) K + (mm) glucose (mg/dL)

151 6.6 101

149 6.4 103

148 6.7  97

151 6.5  99

150 6.3 102

150 6.6 100

149 6.5 103

149 6.8  98

150 6.5 100

147 6.4  99

151 6.6 103

148 6.6  91

152 6.7 102

148 6.5 101

147 6.4 100

148 6.7 101

150 6.8  98

152 6.8  99

148 6.9 103

149 6.8 101

 5. (LO 3, 4, 6) For each of the following sets of control data, 
(1) identify any outlier, trend, or shift, if one is present, and 
(2) explain whether the run should be rejected. Construct-
ing a Levey-Jennings chart is not necessary, but it might 
be helpful. Assume the range of acceptability to be {  2s.

 (a) A control material for serum ammonia is analyzed three 
times daily for 30 days. The mean is 40 mm and the 
standard deviation is 2.1 mm. For an additional 3 days, 
the following data are collected in the order presented.

39, 41, 41, 36, 34, 39, 45, 40, 39

 (b) A control material for urine chloride is analyzed three 
times daily for 30 days. The mean is 50 mEq/L and 
the standard deviation is 2.0 mEq/L. For an additional 
3 days, the following data are collected in the order 
presented.

47, 50, 51, 48, 50, 51, 53, 54, 57

 (c) A control material for hemoglobin A1c is analyzed once 
each weekday for 25 days. The result is expressed as a 
percentage of the total hemoglobin. The mean of the 
25 results is 5.0%, and the standard deviation is 0.3 per-
centage points. For an additional 7 days, the following 
data are collected in the order presented.

5.3, 4.9, 4.6, 4.7, 4.8, 4.9, 4.3

 6. (LO 2, 6) A control material for valproic acid is analyzed 
whenever the laboratory receives an order for that test 
on a patient specimen. There are currently 28 data points 
for the control. The mean is 130 μg/mL and the standard 
deviation is 3.0 μg/mL. Consider the following three pos-
sible scenarios for the next control result, the 29th in the 
sequence.

 (a) The next result is 137 μg/mL. If the analyzer flags the 
result as a violation of Westgard rule 22s for this single 
control material, then what are the minimum and maxi-
mum possible values of the preceding result?

 (b) The next control result is 134 μg/mL. If the analyzer flags 
the result as a violation of Westgard rule 41s, then what 
is the minimum possible value of each of the preceding 
three results?

 (c) The next control result is 128 μg/mL. If the analyzer flags 
the result as a violation of Westgard rule 10x , then what 
is the minimum possible value of the 19th result in the 
entire sequence?

 7. (LO 2, 6) For assay Q, the means for two different con-
trol levels are 60 ng/mL and 200 ng/mL. Their standard  
deviations, respectively, are 2 ng/mL and 5 ng/mL. Five 
additional results are gathered for each control in the 
course of the laboratory routine. Use the Westgard rules to 
decide whether the most recent run should be accepted.

run   1   2   3   4   5

Control 1  58  61  63  59  65

Control 2 195 198 203 200 211

run number Control 1 (mg/dL) Control 2 (mg/dL)

 1 180 252

 2 175 251

 3 187 268

 4 186 268

 5 176 247

 6 177 250

 7 191 251

 8 175 244

 9 179 258

10 175 245

11 181 252

12 181 252

13 180 278

14 191 278

15 180 257

16 176 254

17 178 253

18 179 249

19 178 254

20 174 252
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 8. (LO 2, 6) For assay X, the means for two different control 
levels are 4.5 g/L and 9.2 ng/mL. Their standard deviations, 
respectively, are 0.22 ng/mL and 0.40 ng/mL. Five addi-
tional results are gathered for each control in the course of 
the laboratory routine. Use the Westgard rules to decide 
whether the most recent run should be accepted.

run 1 2 3 4 5

Control 1 4.4 4.2 4.1 4.2 4.2

Control 2 9.3 9.5 9.2 9.1 10.6

PEARSON

Go to www.myhealthprofessionskit.com <http://www.myhealthprofessionskit.com/> to access the Compan-
ion Website created for this textbook. Simply select “Clinical Laboratory Science” from the choice of disciplines. 
Find this book and log in using your username and password to access additional practice problems, answers 
to the practice and contextual problems, additional information, and more.

 9. (LO 2, 6) For assay J, the means for two different control 
levels are 500 IU/mL and 2000 IU/mL. Their standard devia-
tions, respectively, are 20 IU/mL and 100 IU/mL. Five addi-
tional results are gathered for each control in the course of 
the laboratory routine. Use the Westgard rules to decide 
whether the most recent run should be accepted.

run 1 2 3 4 5

Control 1 510 488 503 491 518

Control 2 1880 1944 1906 2130 2047

http://www.myhealthprofessionskit.com/
www.myhealthprofessionskit.com
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Learning Objectives
At the end of this chapter, the student should be able to do the following:
 1. Calculate and interpret sensitivity, specificity, efficiency, prevalence, and 

predictive value
 2. Explain referent values in the context of binary interpretation of numerical 

data
 3. Predict the effect of moving a referent value on sensitivity and specificity
 4. Compare two methods that quantify the same analyte, using linear regres-

sion and the t test for paired specimens
 5. Interpret the results of an interference experiment
 6. Interpret the results of a recovery experiment
 7. Use the F test to compare the precisions of two methods for the same 

analyte
 8. Plan an experiment for determining reportable range
 9. Plan, and interpret the results of, an experiment for determining a refer-

ence range

Key Terms
bias
cutoff
efficiency
false negative
false positive
interference experiment
negative predictive value (NPV)
positive predictive value (PPV)

prevalence
recovery experiment
referent value
reportable range
sensitivity
specificity
true negative
true positive
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Positive Negative TOTAL

Condition present TP FN TP + FN

Condition absent FP TN FP + TN

TOTAL TP + FP FN + TN TP + FP + FN + TN

TP, true positive; FP, false positive; TN, true negative; FN, false negative.

H  TAbLe 12-1 The Four Possible Outcomes of a Diagnostic Test

To evaluate a new method or instrument in the laboratory, we must prove not only its accuracy and 
precision but also its ability to diagnose disorders correctly. Conducting laboratory tests that do not give 
meaningful results wastes time and money and needlessly confounds a physician’s final diagnosis.

DiAgNOsTiC VALue
A test used to diagnose disorders has four possible outcomes, summarized in Table 12-1 H.

True positive (TP): a positive result for a patient who has the condition (correct result)
False positive (FP): a positive result for a patient who does not have the condition (wrong result)
True negative (TN): a negative result for a patient who does not have the condition (correct result)
False negative (FN): a negative result for a patient who has the condition (wrong result)

In an ideal world, all “positives” are true, and all “negatives” are true. In reality, however, there are 
always some false results, whether positive or negative, and a laboratory must factor this inevitability into 
its decision whether or not to adopt a new test.

Sensitivity
We want a diagnostic test to detect the medical condition in question in every patient who has the condi-
tion. Sensitivity is a measure of this capability. It is the number of true positives as a percentage of all the 
results that should have been positive:

sensitivity =
TP

TP + FN
* 100%

The sensitivity, then, tells us the probability that the test result will be positive when the condition is 
 present. In the notation of conditional probability, this is expressed as

P(T+  �  C+ )

which symbolizes the probability (P) of a positive test result (T+ ), given the presence of the  
condition (C+ ). For example, let us consider the hypothetical study summarized in Table 12-2 H.

Because the test gave 105 true positives and 15 false negatives, Equation 1 yields a sensitivity of

sensitivity =
105

105 + 15
* 100% = 88%

 Equation 1

Positive Negative TOTAL

Condition present 105  15 120

Condition absent   4 176 180

TOTAL 109 191 300

H  TAbLe 12-2  Hypothetical Data for Illustrating the  
Diagnostic Properties of a Laboratory Test
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What this means is that the test will detect the condition in 88 out of every 100 patients who have it.
If there were no false negatives, then FN would be 0 and the sensitivity would be 100%; in such a  

case, the method would detect the condition whenever it is present. Sensitivity, then, reflects the test’s 
ability to rule out a particular medical condition because, as sensitivity increases, it is less likely that 
a person with a negative test result has the condition. Because a highly sensitive test returns few false  
negatives, a negative result from the test is probably correct.

High sensitivity is desired when the suspected medical condition is serious and treatable and when a 
false positive does not have harmful consequences. Both the clinic and the laboratory try to detect every 
case. A false positive does not necessarily pose a problem because the test can be repeated and because 
there are usually other tests the patient can undergo.

Specificity
We want a diagnostic test to detect only the medical condition in question. Specificity is a measure of 
this capability. It is the number of true negatives as a percentage of all the results that should have been 
negative:

specificity =
TN

TN + FP
* 100%

The specificity, then, tells us the probability of a negative result when the condition is absent. In the nota-
tion of conditional probability, this is expressed as

P( T-  �  C - )

which symbolizes the probability (P) of a negative test result (T - ), given the absence of the condition 
(C - ).

Consider the same hypothetical data as above (Table 12-2). Because the test gave 176 true negatives 
and 4 false positives, Equation 2 yields a specificity of

specificity =
176

176 + 4
* 100% = 98%

What this means is that the test will give a negative result in 98 out of every 100 patients who do 
not have the condition. If there were no false positives, then FP would be 0 and the specificity would be 
100%; in such a case, the method would detect only the condition of interest. Specificity, then, reflects 
the test’s ability to rule in a particular medical condition because, as specificity increases, it is more likely 
that a person with a positive result actually has the condition. Because a highly specific test returns few 
false positives, a positive result from the test is probably correct.

We desire high specificity when the suspected medical condition is serious but not treatable, in 
which case a false positive can cause emotional or financial harm, or even medical harm if a dangerous 
treatment is attempted. If the diagnosis is accurate (true positive), little or nothing can be done to change 
the clinical course; if the case is missed (false negative), either new symptoms or a worsening of current 
symptoms will bring the patient back to the physician for further testing.

Efficiency
The efficiency (also called accuracy) is a quantity that tells us the probability that a result, whether positive 
or negative, is correct. It represents the number of correct diagnoses as a percentage of all the diagnoses:

efficiency =
TP + TN

TP + FP + TN + FN
* 100%

Using the hypothetical data from Table 12-2 above, we see that 94 out of every 100 test results are 
correct:

efficiency =
105 + 176

105 + 4 + 176 + 15
* 100% = 94%

 Equation 2

 Equation 3
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High efficiency is desired when the condition is both serious and treatable and when a false positive 
and a false negative are equally injurious. A false positive might lead to needless and harmful interven-
tion, such as surgery, chemotherapy, or radiation, whereas a false negative might delay vital treatment.

Prevalence
The prevalence is the frequency of the condition in the population tested at a given time. It is the  
number of persons who have the condition expressed as a percentage of all people who have similar 
demographic and clinical characteristics:

prevalence =
persons with condition

all people in the population
=

TP + FN
TP + FP + TN + FN

* 100%

In the notation of conditional probability, this is expressed as

P(C+ )

which symbolizes the probability (P) of having the condition (C+ ).
For example, if 6000 individuals have whooping cough in a population of 1,000,000, then the preva-

lence of whooping cough in that population is

prevalence =
6000

1,000,000
* 100% = 0.6%

Predictive Value
The predictive value of a positive result, or positive predictive value (PPV), tells us the likelihood that a 
“positive” result is correct. It is the number of true positives as a percentage of all the positives:

positive predictive value (PPV) =
TP

TP + FP
* 100%

In the notation of conditional probability, this is expressed as

P(C+  �  T+ )

which symbolizes the probability (P) of having the condition (C+ ), given a positive test result (T+ ).
Using the hypothetical data in Table 12-2, we see that a positive result from this method is correct 

96 times out of every 100:

positive predictive value (PPV) =
105

105 + 4
* 100% = 96%

Similarly, the predictive value of a negative result, or negative predictive value (NPV), gives the 
likelihood that a “negative” result is correct. It is the number of true negatives as a percentage of all the 
negatives:

negative predictive value (NPV) =
TN

TN + FN
* 100%

In the notation of conditional probability, this is expressed as

P(C -  �  T - )

which symbolizes the probability (P) of not having the condition (C- ), given a negative test result (T-).

 Equation 4

 Equation 5

 Equation 6
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Again using the hypothetical data in Table 12-2, we see that a negative result from this method is 
correct 92 times out of every 100:

negative predictive value (NPV) =
176

176 + 15
* 100% = 92%

The sensitivity and specificity are measures of a diagnostic test’s power to discriminate between 
the presence and absence of a medical condition. However, to determine the likelihood that a particular 
patient has a condition after a test result has been reported, the predictive value is determinative. The 
PPV of 96%, calculated from the hypothetical data in the previous example, tells us that 96 out of every 
100 people who test positive actually have the condition in question. High positive predictive value is 
imperative for conditions in which a false positive might cause harm.

There is a common misconception that a positive result from a test with a high sensitivity means that 
there is a high probability of having the condition. Consider a population of 100,000 people. If the preva-
lence of soy-protein allergy in that population is 0.5%, then the condition is present in 500 individuals 
and absent from the other 99,500. If the sensitivity of the test for this allergy is 92%, then the 500 afflicted 
persons will give 460 positive results and 40 negative. Moreover, if the specificity of the test is 88%, then 
the 99,500 persons who do not have the allergy will give 87,560 negative results and 11,940 positive.

Therefore, the probability that a person with a positive test result actually is allergic to soy protein 
is equal to the positive predictive value:

PPV =
TP

TP + FP
=

460
460 + 11,940

* 100% = 4%

Only four out of every 100 positive test results are true, even though both the sensitivity and speci-
ficity of the test are high. What this example demonstrates is that values for sensitivity and specificity 
alone can be misleading. Although they are properties of a diagnostic test that should be consistent from 
one patient to the next under similar circumstances, predictive value varies with the prevalence of the 
condition in question, and it can change between populations even if the sensitivity and specificity of 
the test remain the same. For example, if the prevalence of allergy to soy protein were 2.5%, not 0.5% as 
above, then using the same laboratory test with the same sensitivity (92%) and specificity (88%) would 
yield a PPV of 16%, which is higher by a factor of 4.

The PPV is related to the prevalence, sensitivity, and specificity by this equation:

PPV =
(sensitivity)(prevalence)

(sensitivity)(prevalence) + (1 - specificity)(1 - prevalence)
* 100%

                   

fraction of                   probability of not having
false positives                  the condition

P(T+  �  C-)                 P(C-)

=
FP

TN + FP
    =

    FP + TN
TP + FP + TN + FN

in which prevalence, sensitivity, and specificity are expressed as decimals, not as percentages.
Notice that, as the prevalence approaches 1.0 (100%), the influence of the fraction of false positives 

diminishes. In other words, not surprisingly, if nearly everyone in a population has the condition in ques-
tion, then false positives become very rare, and the PPV approaches 100%. The upshot of this equation is 
the fact that, if a test is worth using, then its positive predictive value is greater than the prevalence of the 
condition. This is so because, if a positive result from the test has no greater power to predict a condition 
than does merely knowing the frequency of the condition, then the test is no more diagnostically useful 
than is the prevalence.

Binary Interpretation of Numerical Data
Most clinical questions are binary in that they have a “yes” or “no” answer, whereas most test results are 
numerical and lie on a continuum. For example, a diagnosis of diabetes, which is a yes-or-no decision, 
comes from numerical data on the glucose concentration in the blood. At this writing, a fasting blood 

 Equation 7
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n  Figure 12-1 Classic overlapping distributions of persons with a particular 
medical condition (blue) and those without it (pink).

Range of results for those with the condition

Range of results for those without the condition

Mean

Mean

Number of
persons

Test result

glucose concentration of at least 126 mg/dL indicates diabetes (when confirmed on another day).1 In 
other words, “126 mg/dL” is the referent value or cutoff. But how do we go about converting a numerical 
test result into a yes-or-no clinical diagnosis?

Figure 12-1 n depicts the classic overlapping distributions of persons with a given medical condi-
tion (blue curve) and of persons without it (pink curve). The mean test result for those with the condition 
(blue dashed line) is obviously higher than the mean test result for those without the condition (pink 
dashed line). Nevertheless, results in the low end of the blue curve, which represents persons with the 
condition, are observed also in the high end of the pink curve, which represents persons without the con-
dition. Thus, there is a range of results in common between those with and those without the condition.

The orange vertical line in Figure 12-2A n represents a referent value (a cutoff) for deciding whether 
a particular patient has the condition in question. If the test result is above the referent value, then the 

1National Diabetes Information Clearinghouse (2010). Diagnosis of diabetes. Retrieved from http://diabetes.niddk.nih.gov/dm/
pubs/diagnosis/.

n  Figure 12-2 Effect of shifting the referent value (cutoff) on sensitivity and 
specificity. (A) The chosen cutoff eliminates false positives and maximizes specificity 
by compromising sensitivity. (B) The chosen cutoff eliminates false negatives and 
maximizes sensitivity by compromising specificity.

A referent value for low
sensitivity and high specificity

False negatives

True negatives

True positives

A referent value for high
sensitivity and low specificity

False positives

True positives

True negatives

A

B

http://diabetes.niddk.nih.gov/dm/pubs/diagnosis/
http://diabetes.niddk.nih.gov/dm/pubs/diagnosis/
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patient is considered to have the condition; if the result is below the referent value, then the patient is 
considered not to have the condition. Notice that, because all persons whose test results exceed the cutoff 
have the condition, we can see there are no false positives; thus, the specificity of the test is high, making 
it suitable for a serious but untreatable condition, as mentioned previously. In contrast, notice that there 
are persons who have the condition (blue curve) but whose test results fall below the cutoff. The test gives 
false negatives, and its sensitivity is accordingly low.

In order to eliminate the false negatives, we might move the referent value to the left, that is, to a 
lower result. Figure 12-2B shows the effect of such a change. All persons who have the condition (blue 
curve) now test positive; thus, the sensitivity is high and the test is suitable for a serious and treatable 
condition, as mentioned above. However, even though there are no longer false negatives, there are now 
false positives, with many persons who do not have the condition (pink curve) giving test results above 
the cutoff. Accordingly, the specificity is low.

Establishing a referent value is a compromise between sensitivity and specificity, requiring us to 
assign relative importance to false positivity and false negativity. False positives carry emotional and 
financial repercussions, as mentioned earlier, but they also necessitate what may be the difficult removal 
of a positive diagnosis from a patient’s medical history after the mistake is discovered. False negatives, 
however, may cause a delay in life-saving treatment.

A systematic approach to optimizing referent values and to comparing diagnostic tests involves the 
use of receiver-operating characteristic curves (ROC curves) and likelihood ratios. Appendix 12-4 on 
the website discusses these tools in detail.

QuALiTy AssurANCe FOr MeThODs AND iNsTruMeNTs
Quality assurance is a comprehensive program of analyzing preanalytical, analytical, and postanalytical 
processes for the testing of patient specimens. Quality control, which Chapter 11 discusses, is only one 
part of a quality-assurance program. Another important part is that of verifying and establishing the 
performance specifications of methods and instruments that a laboratory employs.

The Clinical Laboratory Improvement Act of 1988 (CLIA 88) standardized the regulations gov-
erning all aspects of the clinical laboratory. Since their first publishing in 1992, these regulations have 
been updated to reflect changes in science and technology. The most recent changes (Sect.  493.1253) 
obligate the laboratory to verify a manufacturer’s performance specifications for any test put into use on 
or after April 24, 2003, if that test has been approved by the FDA and if the laboratory has not modified 
it. Those specifications consist of (1) accuracy, (2) precision, and (3) reportable range (the highest and 
lowest results that are accurate). The laboratory also must show that the manufacturer’s reference ranges 
are appropriate for the laboratory’s patient population.

However, the laboratory must establish performance specifications for FDA-approved tests that 
the laboratory has modified, for tests not subject to FDA approval (e.g., tests developed in-house), and 
for tests for which the manufacturer does not provide specifications. Those specifications consist of  
(1) accuracy, (2) precision, (3) analytical sensitivity, (4) analytical specificity, (5) reportable range,  
(6) reference ranges, and (7) any other characteristic required for test performance.

The laboratory is not required either to verify or to establish performance specifications for any test 
that it was using before April 24, 2003.

Verifying or Establishing Accuracy
Chapters  3 and 8 define accuracy as the degree of correctness of a result, that is, how close an actual result 
comes to its true value. For evaluating a new method or instrument, a common approach to determin-
ing accuracy is to compare, for two or three dozen specimens, the results obtained by the method under 
evaluation with the results obtained by an established reference method. Each specimen is divided into 
two aliquots, one being tested on the new method and the other on the reference method. We then plot 
the results for the new method against those for the reference method and examine the relationship 
between the two sets of results. Figures  12-3 n  and 12-4 n  depict this kind of experiment: a comparison 
of two methods for the quantification of serum glucose.

In an ideal scenario (Figure 12-3), the two methods return the same value for every specimen and 
the data points lie on a straight line described by a very simple equation: y = x. The slope is 1, the 
y-intercept is 0, and the correlation coefficient (r) is 1. By contrast, in a realistic scenario (Figure 12-4), 
not every point lies on the regression line. The slope of the line differs slightly from 1 and the y-inter-
cept differs slightly from 0. Nevertheless, the correlation coefficient can be high (0.991 in this example).  

PEARSON

APPeNDix 12-4 
“roC Curves and likelihood ratios”
www.myhealthprofessions.kit.com

www.myhealthprofessions.kit.com
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n  Figure 12-3 An idealized comparison of two methods for the quantification of 
serum glucose. The two methods return the same value for every specimen; thus, 
the regression lines makes a 45° angle to the origin, every data point lies on the 
line, and the correlation is perfect. The equation is y = (1)x + 0, or y = x.

y � mx � b
y � (1)x � 0 
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n  Figure 12-4 A realistic comparison of two methods for the quantification of 
serum glucose. Not all the points lie on the regression line, but the correlation is 
high (r = 0.991). The slope is close to, but not exactly, 1. The y-intercept is close 
to, but not exactly, 0.
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As Chapter 8 explained (see Table 8-2 and the corresponding text), the correlation coefficient is an 
appropriate statistic for method comparison because both variables are measured.

Because each specimen was run under the new method and the reference method, the paired t test 
(Equation 14 in Chapter 8) can help us decide whether the two methods differ significantly in the results 
they give. The example in Chapter 8 compares results from two instruments for the fictitious substance 
M. For the example here, however, let us use the data behind the graph in Figure 12-4.

Table 12-3 H summarizes those data. The t statistic is    - 8.816   and there are 33 degrees of freedom. 
At p = 0.01, therefore, the critical value is between -2.787 (25 d.f.) and -2.678 (50 d.f.). Because the cal-
culated value of t is more extreme, we conclude that the two methods differ significantly from each other 
in the results they return for serum glucose. Therefore, method B has a bias, which is defined as the differ-
ence between the average result from the new method and the average result from the reference method:

bias = mean result from new method - mean result from reference method

In this case, the bias is

bias = 94.0 mg/dL (method B) - 86.3 mg/dL (method A) bias = 7.7 mg/dL

 Equation 8

glucose Conc.  
(mg/dL)

glucose Conc. (mg/dL) 
(continued)

A–b
(continued)Method A Method b A–b Method A Method b

30 37 -7  79  80 -1

30 34 -4  81  88 -7

35 42 -7  84  99 -15

38 41 -3  88  98 -10

44 50 -6  89  91 -2

47 53 -6  93  99 -6

50 60 -10  96 109 -13

52 64 -12  99 110 -11

57 57 0 105 116 -11

59 60 -1 110 126 -16

61 61 0 118 128 -10

62 70 -8 126 130 -4

65 76 -11 134 145 -11

69 71 -2 150 155 -5

73 70 3 166 180 -14

74 81 -7 189 207 -18

77 88 -11 204 220 -16

MEAN (D) = -8

VARIANCE (s2) = 28

n = 34

t@STATISTIC = -8.816

(Equation 14 in Chapter 8, paired samples)

t =
DA s2

n

Note: These data are plotted in Figure 12-4.

H  TAbLe 12-3  Using the t Test for Paired Samples to Compare Two Methods  
for Quantifying Serum Glucose
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A bias can be positive or negative, depending on whether the new method’s mean result is greater than 
or less than that of the reference method.

Detecting Constant Systematic Error
The presence of interfering substances in specimens is one of the causes of constant systematic error 
(see Figure 11-5 in Chapter 11). An interference experiment is a paired comparison in which one 
aliquot is spiked with a selected substance that may interfere with the assay (e.g., a drug or bilirubin). 
The other aliquot is not spiked, although it does receive enough diluent to equalize volumes. The 
total constant systematic error is the value of the y-intercept, which, in the absence of interference, 
should be 0.

Detecting Proportional Systematic Error
A recovery experiment detects proportional systematic error (see Figure 11-5 in Chapter 11), and it 
gives the same information as does a method comparison. Therefore, if the slope calculated from a 
method comparison shows little or no proportional systematic error, then a recovery experiment might 
be unnecessary.

In a recovery experiment, the specimens are split into aliquots; the target analyte is added in known 
quantity to one aliquot, and diluent is added to the other (the “baseline” aliquot) to equalize the volumes. 
We calculate the recovery from these formulas:

conc. recovered = (conc. in spiked aliquot) - (conc. in baseline aliquot)

% recovery =
conc. recovered

conc. added
* 100%

In general, the percent recovery is acceptable when between 95% and 105%.

Ascertaining Precision
We can compare the precision of a new method with that of a reference method by means of the F test, 
which Chapter 8 presents in detail (see Equation 11 in Chapter 8). For the data presented in Table 12-3, 
the F test gives a ratio of 1.143:

F =
variancemethod B

variancemethod A
=

2151
1882

= 1.143

For 33 degrees of freedom in the numerator and in the denominator, the critical value is hard to locate 
in published tables, even though they abound on the Internet. But multiples of 10 are easy to find. For 30 
degrees of freedom (at a p value of 0.05), the critical value is 1.8408, whereas for 60 degrees of freedom, it 
is 1.5343. Therefore, the critical value for 33 degrees of freedom is between 1.5343 and 1.8408. Because 
the calculated value of 1.143 does not exceed the critical value, we cannot conclude that method B is 
more precise than method A.

DeTerMiNiNg rePOrTAbLe rANge
An assay is said to be “linear” when the assayed concentration of a given analyte is directly proportional  
to the analyte’s true concentration in the specimen being tested (or assayed count vs. true count, or 
assayed activity vs. true activity). After all, if an analyte’s true concentration triples, the physician should 
rightly expect the reported result also to triple. Although in some testing systems the mathematical  
relationship between assay response and concentration is inherently nonlinear (for example,  
competitive-binding assays), that relationship should yield final results that satisfy the requirement for 
linearity between assayed concentration and true concentration.

As stated earlier, the reportable range represents the highest and lowest results that are accurate. 
Verifying or establishing the reportable range entails running several specimens of known concentra-
tions that span the analytical range; two of those concentrations should challenge the upper and lower 

 Equation 9

 Equation 10
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limits of the assay. We then evaluate the linearity of the results and identify the reportable range. Analysis 
of the linearity is carried out by means of the techniques explained in Chapter 8: visual inspection, linear 
regression, root-mean-squared error, standard error of the slope, confidence intervals, and the coef-
ficient of determination. Other tools exist for this purpose, one example being the polynomial method. 
Appendix 12-1 on the website discusses the polynomial method in detail.

Five concentrations should be tested, each one in triplicate. This is so because, if the relationship 
between assayed result and true result is sigmoidal, then running only four concentrations may fail to 
capture it. The other possible relationships—lines, hyperbolas, and parabolas—are detectable with fewer 
than five points. Consult Appendix 12-2 on the website for elaboration.

DeTerMiNiNg reFereNCe rANges
When verifying or establishing a reference range, we should have 100–150 specimens that represent the 
laboratory’s patient population. If the data have a normal distribution (see Figure 8-2 in Chapter 8), then 
the reference range runs from 2 SD below the mean up to 2 SD above the mean, an interval that includes 
95% of all results (see Figure 8-3 in Chapter 8). If the data are not normally distributed, then we must 
employ an alternative approach to find the central 95%.

One such approach, often called “nonparametric ranking” or the “ranked percentile method,” starts 
by ordering the data values from lowest to highest. The value that corresponds to 2.5% of the data defines 
the low end of the reference range, whereas the value that corresponds to 97.5% of the data defines the 
high end. Identifying these two values is tantamount to dropping the highest and lowest 2.5% of all the 
data points. An example follows.

Suppose we have 125 results with which to establish the reference range for a new assay in our 
laboratory. We begin by ranking the results in ascending order:

rank Value

  1  9

  2 11

  3 11

  4 13

  5 14

  6 16

. .

. .

. .

120 82

121 82

122 84

123 85

124 87

125 89

APPeNDix 12-2 
“Capturing the Curves in linearity 
testing”
www.myhealthprofessions.kit.com
PEARSON

The result occupying the 2.5% position is

2.5% * 125 = 3.1 (rank 3)

which corresponds to a value of “11.” All results below this value represent the lowest 2.5% of the data. 
Next, the result occupying the 97.5% position is

97.5% * 125 = 121.9 (rank 122)

which corresponds to a value of “84.” All results above this value represent the highest 2.5% of the data. 
Therefore, the reference range becomes “11–84,” encompassing the central 95% of all the results.

APPeNDix 12-1 
“Polynomials and the Polynomial 
Method for evaluating nonlinearity”
www.myhealthprofessions.kit.com
PEARSON
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Summary
 8. The referent value, or cutoff, is the value above which the 

patient is said to have the specified medical condition and 
below which the patient is said not to have it.

 9. Establishing a referent value is a compromise between sen-
sitivity and specificity. False positives carry emotional and 
financial repercussions, and false negatives may cause a 
delay in life-saving treatment.

 10. Quality assurance is a comprehensive program of analyzing 
preanalytical, analytical, and postanalytical processes for 
the testing of patient specimens.

 11. the Clinical laboratory improvement act of 1988 (Clia 88) 
standardized the regulations governing all aspects of the 
clinical laboratory.

 12. The laboratory must verify a manufacturer’s performance 
specifications (accuracy, precision, reportable range) for 
any test put into use on or after April 24, 2003, if that test 
has been approved by the FDA and if the laboratory has 
not modified it.

 13. The laboratory must establish performance specifications 
for FDA-approved tests that the laboratory has modified, 
for tests not subject to FDA approval, and for tests for 
which the manufacturer does not provide specifications. 
Those specifications consist of (a) accuracy, (b) precision,  
(c) analytical sensitivity, (d) analytical specificity, (e) report-
able range, (f) reference ranges, and (g) any other charac-
teristic required for test performance.

 14. A common approach to determining accuracy is to 
compare, for two or three dozen specimens, the results 
obtained by the method under evaluation with the results 
obtained by an established reference method. Each speci-
men is divided into two aliquots, one being tested on the 
new method and the other on the reference method. We 
then plot the results for the new method against those 
for the reference method and examine the relationship 
between the two sets of results.

 15. Bias is the difference between the average result from the 
new method and the average result from the reference 
method:

bias = mean result from new method

- mean result from reference method

 16. An interference experiment is a paired comparison in which 
one aliquot is spiked with a selected substance that may 
interfere with the assay. the other aliquot is not spiked, 
although it does receive enough diluent to equalize vol-
umes. The total constant systematic error is the value of the 
y-intercept, which, in the absence of interference, should 
be 0.

 1. Sensitivity is a measure of a test’s ability to detect the 
medical condition in question in every patient who has the 
condition. High sensitivity is desired when the suspected 
medical condition is serious and treatable and when a false 
positive does not have harmful consequences.

sensitivity =
TP

TP + FN
* 100%

 2. Specificity is a measure of a test’s ability to detect only the 
medical condition in question. High specificity is desired 
when the suspected medical condition is serious but not 
treatable.

specificity =
TN

TN + FP
* 100%

 3. Efficiency is a quantity that tells us the probability that a 
result, whether positive or negative, is correct. High effi-
ciency is desired when the condition is both serious and 
treatable and when a false positive and false negative have 
equally injurious consequences.

efficiency =
TP + TN

TP + FP + TN + FN
* 100%

 4. Prevalence is the frequency of the condition in the popula-
tion tested at a given time.

prevalence =
persons with condition

all people in the population

=
TP + FN

TP + FP + TN + FN
* 100%

 5. The predictive value of a positive result, or positive predic-
tive value (PPV), tells us the likelihood that a “positive” 
result is correct.

positive predictive value (PPV) =
TP

TP + FP
* 100%

 6. The predictive value of a negative result, or negative pre-
dictive value (NPV), gives the likelihood that a “negative” 
result is correct.

negative predictive value (NPV) =
TN

TN + FN
* 100%

 7. The PPV is related to the prevalence, sensitivity, and specificity:

PPV =
(sensitivity)(prevalence)

(sensitivity)(prevalence) + (1 - specificity)(1 - prevalence)
* 100%
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Practice and Contextual Problems
 1. (LO 1, 2, 3) Twenty-five adult patients with fever are tested 

for bacteremia (presence of bacteria in the blood). The fol-
lowing table presents leukocyte counts (*103 cells/mm3) 
for patients who tested negative for bacteremia and for 
those who tested positive.

 (c) How would raising the cutoff to 15 * 103 cells/mm3 
change the sensitivity and specificity?

 (d) Calculate the positive predictive value for a cutoff of 
10 * 103 cells/mm3.

 2. (LO 1) Consider a home HIV test that claims 99% sensitiv-
ity and 99% specificity. If a particular man runs the test on 
himself, according to directions, and the result is positive, 
what is the probability that he actually does have HIV? For 
men with demographic and clinical characteristics similar 
to his, HIV is present in 1 out of every 85,000 individuals.

 3. (LO 1) A study was conducted to determine the usefulness 
of a new test for detecting human papilloma virus (HPV) in 
women. The data for the new test appear in the table below.

 (a) Calculate the prevalence of HPV in this population as 
determined by the new test.

 (b) Calculate the sensitivity and specificity of the new test.

 (c) Calculate the positive and negative predictive values.

infection status

Present Absent

Test 
result

Negative 16 280

Positive 208 10

 17. In a recovery experiment, which detects proportional sys-
tematic error, the specimens are split into aliquots; the tar-
get analyte is added in known quantity to one aliquot, and 
diluent is added to the other (the “baseline” aliquot) to 
equalize the volumes. In general, the percent recovery is 
acceptable when between 95% and 105%.

conc. recovered = (conc. in spiked aliquot)

- (conc. in baseline aliquot)

% recovery =
conc. recovered

conc. added
* 100%

 18. We can compare the precision of a new method with that 
of a reference method by means of the F test:

F =
variancemethod B

variancemethod A

 19. an assay is said to be “linear” when the final result for a 
given analyte is directly proportional to the analyte’s true 
result for the specimen being tested.

 20. The reportable range represents the highest and  lowest 
results that are accurate. Verifying or establishing the 
reportable range entails running several specimens of 
known concentrations that span the analytical range; two 
of those concentrations should challenge the upper and 
lower limits of the assay.

 21. When verifying or establishing a reference range, we should 
have 100–150 specimens that represent the laboratory’s 
patient population. If the data have a normal distribution, 
then the reference range runs from 2 SD below the mean 
up to 2 SD above the mean. If the data are not normally 
distributed, then we must employ an alternative approach 
to find the central 95%.

 22. “nonparametric ranking” is one alternative. it starts by 
ordering the data values from lowest to highest. The value 
that corresponds to 2.5% of the data defines the low end 
of the reference range, whereas the value that corresponds 
to 97.5% of the data defines the high end.

(−) bacteremia (+) bacteremia

6.2 13.6

9.3 18.1

8.8 15.6

11.7 27.0

7.0 10.5

9.3 18.7

6.8 20.5

7.9 12.6

10.5 14.9

5.4 23.2

14.2

7.8

8.0

10.9

7.4

 (a) Calculate the prevalence of bacteremia in this popula-
tion of patients with fever.

 (b) Calculate the sensitivity and specificity when the cutoff 
value of the leukocyte count for diagnosing bacteremia 
is 10 * 103 cells/mm3.

 4. (LO 1) Suppose the prevalence of HIV is 0.3% in the popu-
lation of 500,000 blood donors for your geographical area. 
However, among the patients at the substance-abuse clinic 
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salmonellosis

Present Absent

result of 
Test X

Negative  0 317

Positive 51  66

in your hospital, the prevalence is 16%. The screening test 
for HIV has a sensitivity and specificity of 99.9%.

 (a) Calculate the positive predictive value of the test for 
each of these two populations.

 (b) If the substance-abuse clinic has 200 patients, how many 
of them are expected to have HIV?

 (c) If there are 1132 positive results for blood donors, how 
many are false?

 5. (LO 1) Your laboratory is evaluating two tests, X and Y, for 
their abilities to diagnose salmonellosis. The data appear 
in the two tables below.

 (a) Calculate the sensitivity and specificity of each test.

 (b) Which test, when its result is positive, is more reliable for 
diagnosing salmonellosis?

 (a) Identify each of the four numbered areas by outcome 
(TP, FP, TN, FN).

 (b) If the cutoff is shifted upward, how does the test’s sen-
sitivity change?

 (c) Suppose the cutoff stands at two standard deviations 
above the mean for the pink curve. if the cutoff is moved 
to three standard deviations, how does the test’s speci-
ficity change?

 (d) Suppose the cutoff stands at two standard deviations 
below the mean for the blue curve. If the cutoff is moved 
to three standard deviations, how does the test’s sensi-
tivity change?

 8. (LO 2, 3) Consider the two patient distributions appearing 
below, one for those without disease (pink) and the other 
for those with disease (blue).

 (a) Explain whether the test is more suitable for a serious 
treatable disease or for a serious untreatable disease.

 (b) Where should the cutoff be moved to render the test 
more suitable for the other kind of disease? explain.

Cancer

Present Absent

Concentration  
of hormone Q

6  200 ng/ml  59 399

7  200 ng/ml 187 514

salmonellosis

Present Absent

result of 
Test Y

Negative 10 536

Positive 72 4

 6. (LO 1) The probability of rolling a 2, 3, 4, 5, or 6 on a single 
six-sided die is 83%. Suppose we officially interpret any 
of those five numbers as a negative result for myocardial 
infarction. We call this the “toss test.”

 (a) Calculate the specificity of the toss test.

 (b) Although the toss test is patently absurd, what does it 
illustrate about the properties of sensitivity and specific-
ity in general?

 7. (LO 2, 3) Consider the two patient distributions appearing 
below, one for those without disease (pink) and the other 
for those with disease (blue). The orange vertical line rep-
resents the cutoff between negativity and positivity for the 
diagnostic test.

Disease
present

Disease
absent

1

4

2 3

Cutoff

Disease
present

Disease
absent Cutoff

 9. (LO 1, 2, 3) Suppose hormone Q is a marker for cancer 
when its concentration in the serum exceeds 200 ng/mL. 
Data on the diagnostic usefulness of hormone Q appear 
in the table below.

 (a) What is the probability that a patient with a result 
6  200 ng/ml does not have cancer?

 (b) What is the probability that a patient with a result 
7  200 ng/ml does have cancer?

 (c) What is the probability that a given test result matches 
the diagnosis?

 10. (LO 4) Solve Practice Problem 10 (a, b) in Chapter 8.

 11. (LO 7) Solve Practice Problem 21 in Chapter 8.

 12. (LO 7) Solve Contextual Problem 7 in Chapter 8.

 13. (LO 6) A recovery experiment is performed for the valida-
tion of a new assay that quantifies chloride ion in serum. 
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Each test aliquot is spiked with an additional 6 mEq/L to a 
final volume of 150 μL, and diluent is added to each base-
line aliquot to the same final volume. Calculate the aver-
age percentage of recovery. Each result in the table is the 
mean of triplicates.

Conc. of Chloride (meq/L)

specimen spiked Aliquot baseline Aliquot

 1 107 101

 2 106  99

 3 110 105

 4 106 100

 5 102  96

 6 110 104

 7 106 101

 8 114 108

 9 105 100

10 109 104

11 103 101

12 105  98

13 113 106

14 117 110

15 105  99

16 110 103

17 106 100

18 115 111

19 115 108

20 107 102

 14. (LO 4) For quantifying hemoglobin A1C in whole blood, 
a laboratory is comparing its current analyzer with a new 
analyzer. Using the t test for paired specimens (Equation 
14 in Chapter 8), determine whether the two analyzers 
differ significantly.

rank Value

  1 0.23

  2 0.23

  3 0.25

  4 0.26

  5 0.27

  6 0.29

  7 0.32

. .

. .

. .

157 1.33

158 1.39

159 1.42

160 1.44

161 1.49

162 1.57

 15. (LO 9) From the following data for analyte Q, determine 
the reference range. The data are not normally distributed.

PEARSON

Go to www.myhealthprofessionskit.com <http://www.myhealthprofessionskit.com/> to access the Com-
panion Website created for this textbook. Simply select “Clinical Laboratory Science” from the choice 
of disciplines. Find this book and log in using your username and password to access additional practice  
problems, answers to the practice and contextual problems, additional information, and more.

A1C conc. (%)
A1C conc. (%)
(continued)

Method A Method b Method A Method b

 6.2  6.1  9.0  8.6

 3.9  4.5  4.6  5.0

 9.8  8.9  6.0  6.2

 5.0  5.1  5.4  5.2

 4.7  5.2  4.7  5.0

 4.8  4.7  5.2  5.2

 5.9  6.1  6.6  6.9

 4.0  4.4  7.9  7.8

13.2 13.8  4.9  4.2

 7.1  6.9  4.2  4.3

 4.5  4.2 12.2 13.0

 5.2  5.0  6.0  5.9

 6.1  6.5  5.1  5.1

 4.9  5.0  7.6  7.4

 4.8  5.0  4.6  4.4

10.7 10.3  4.8  5.0

 8.3  8.8  5.0  5.0

www.myhealthprofessionskit.com
http://www.myhealthprofessionskit.com/


Frequently Asked Questions  
and Common Misunderstandings

Are the units “milliliter” and “cubic centimeter” interchangeable?

Are the constants KM and KS the same?

In calculating the standard deviation (SD), which denominator is better: n or n–1?

Is the coefficient of variation (CV) useable with positive and negative data values?

Is the standard deviation (SD) better than the mean absolute deviation (MAD)?

When is the p value misleading?

How is the p value misinterpreted?

How is the null hypothesis (H0) misleading?

What do the terms “micron,”   “lambda,” and “gamma” mean?

Can pH be negative?

When applied to acids and bases, are “strength” and “concentration” synonymous?

Why does the pH scale run from 1 to 14?

Why is “mcg,” instead of  “μg,” sometimes used to abbreviate “microgram”?

Is there an easy way to rationalize the equations for Celsius–Fahrenheit conversions?

Why do only some equilibrium constants appear with units?

What are the criteria for choosing a measure of central tendency?

Are the units “milliliter” And “cubic 
centimeter” interchAngeAble?
For almost all practical circumstances in a clinical setting, laboratories included, the answer to this ques-
tion is “yes.” In exacting scientific work, however, there is possibly a fine difference between these two 
units that may matter. The details follow.

In 1791, during the French Revolution, the National Assembly of France accepted a proposal from 
a commission of savants to define various units of measure. The unit of volume, eventually becoming 
known as the “liter,” was defined as the volume of a cube with each side being one-tenth of a meter in 
length, that is, a volume of 1 cubic decimeter (dm3).

The unit of mass, eventually called the “kilogram,” was defined as the mass of one liter of distilled 
water at the temperature of melting ice. This followed naturally from the existing definition of “gram” 
as the mass of one cubic centimeter of water at that same temperature. Soon afterwards, however, it was 
argued that the temperature used should be the one at which the density of water is greatest (4°C). At 
that slightly higher temperature, it was discovered that one liter of water had an actual mass of 0.9999707 
kg; that is, 1 kilogram actually occupied 1000.029—not 1000 exactly—cubic centimeters. Therefore,  
1 milliliter equaled 1.000029 cm3.
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In 1901, the third meeting of the General Conference on Weights and Measures (Conférence Général 
des Poids et Mesures [CGPM]) decided officially to maintain the liter as the equivalent of 1000.029 cm3 
(the volume of 1 kilogram of pure water at maximum density and standard atmospheric pressure). In 
1964, the 12th meeting of the CGPM abrogated that definition, declaring the term “liter” to be a special 
name for the cubic decimeter. This action reestablished the liter as a true volume by divorcing it from 
the kilogram. Nowadays, consequently, nearly all concerned parties treat the milliliter as being exactly 
equal to one cubic centimeter, although the tiny difference between them may affect measurements with 
certain existing volumetric ware, and only out at the fifth decimal place.

references

 1. Décret relatif aux poids et aux mesures, Art. 5, 18 germinal an 3 (7 avril 1795).
 2. Stott, V. (1929). The milliliter. Nature, 124, 622–623.
 3. International Committee of Weights and Measures (1902). Nature, 65, 538.
 4. General Conference on Weights and Measures, Bureau International des Poids et Mesures. Retrieved 

July 1, 2011, from http://www.bipm.org/en/convention/cgpm/.

Are the constAnts KM And KS the sAme?
No, they are not the same. However, they sometimes can be treated as being equal when dissocia-
tion of the Michaelis complex (ES S E + S) is much faster than conversion of substrate to product 
(ES S E + P), that is, when k-1 W k2.

in cAlculAting the stAndArd deviAtion (sd), 
which denominAtor is better: n or n–1?
The denominator n–1 is better. The alternative, n, is acceptable when its value is so high that it returns 
the same SD as does n–1.

is the coefficient of vAriAtion (cv) useAble 
with positive And negAtive dAtA vAlues?
The CV makes sense only when every data value is positive. When both positive and negative values are 
present, one of three problems arises:

 a. the mean is zero, in which case the CV cannot be computed;
 b. the mean is less than zero, in which case the CV is negative (and meaningless); or
 c. the mean is close to zero, in which case the CV can be misleading, even preposterous.

Consider an example of scenario c. Assume the following eight data values:

-7, -5, -3, -1, 1, 3, 5, 8

The mean of these values is 0.125 and the standard deviation is 5.11; therefore, the CV is 4089%. This 
means that the standard deviation is 40.89 times larger than the mean, implying that the data are spread 
very much farther apart than they really are. In this case, the CV is useless.

is the stAndArd deviAtion (sd) better thAn 
the meAn Absolute deviAtion (mAd)?
The answer to this question depends on the person asked and on the information needed from a given 
analysis.

The MAD is the average absolute difference between the mean and the data values:

MAD =
a
n

i = 1
� xi - x �

n

http://www.bipm.org/en/convention/cgpm/
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The SD, or s, is the square-root of the average squared difference between the mean and the data values:

SD = s = Sa
n

i = 1
(xi - x)2

n - 1

Reasons to Prefer the SD over the MAD
 1. The notation for absolute value is difficult to use in algebra and calculus. In the early 20th century, 

this property set the course for modern statistics, with the result that using the SD became traditional. 
Furthermore, its usefulness became compelling as statisticians discovered they could express the 
proportion of a normal distribution lying within a certain multiple of the SD.

 2. Consider an experiment in which a large, normally distributed population is sampled repeatedly, 
and the SD and MAD are calculated for each sampling. The result is a set of SDs and a set of 
MADs. Under ideal conditions (absence of error in the observations), the standard deviation 
of the MAD values is greater than the standard deviation of the SD values.1 This means that 
the SD is more consistent than the MAD at estimating the standard deviation (σ)  of the whole 
population.

 3. By squaring the differences between the mean and the data values, the SD captures whatever greater 
variation may be present in the data, whereas the MAD may not. For example, consider these two 
data sets: (a) 10, 10, 15, 20, 20 and (b) 13, 7, 15, 23, 17. Even though set b has more variation than set 
a, the MAD for each data set is 4. The SD, however, reflects the difference; it is 5.0 for set a and 5.8 
for set b.

Reasons to Prefer the MAD over the SD
 1. The MAD is less sensitive to outliers. The SD exaggerates larger deviations by squaring them; taking 

the square root of the sum of the squares does not fully offset the bias.
 2. Under nonideal conditions, that is, where there are “naturally occurring deviations from the ideal 

model” as one would encounter in a scientific experiment, the MAD is more consistent than the 
SD at estimating the standard deviation (σ)  of the whole population.2 This is the opposite of what 
happens under ideal conditions (bullet #2 above, under “Reasons to prefer the SD over the MAD”). 
Thus, the MAD may be superior in real-world experiments, where vicissitudes are present in mea-
surements and observations.

 3. The MAD may be more appropriate than the SD for non-normal distributions,1 which may be 
more common than is generally believed. Distributions that seem normal (i.e., that are approxi-
mately normal) may not actually be normal, even in the clinical laboratory. There is a tendency to 
reject extreme values as outliers because they so greatly influence the SD, even though those values 
may be legitimate and may offer important information about the underlying phenomena at work.

 4. The MAD is more intuitive than the SD. The average distance of the data values from their mean is 
more straightforward to interpret than is the square root of the average squared distance from that 
same mean.

references

 1. Stigler, S. M. (1973). Studies in the history of probability and statistics. XXXII: Laplace, Fisher and 
the discovery of the concept of sufficiency. Biometrika, 60, 439–445.
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when is the p vAlue misleAding?
The p value can be misleading whenever the sample size is too small or too large. If the sample size is too 
small, statistical significance may fail to appear, even if the effect is large. However, if the sample size is 
too large, even very small effects can show statistical significance.
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how is the p vAlue misinterpreted?
Researchers sometimes use the p value to answer the wrong question. The p value is the probability of 
obtaining the results that were actually observed if the null hypothesis (H0) is true. The null hypothesis 
states that the two groups come from the same overall population, that is, that there is no real difference 
between the two groups. The question that the p value properly answers is the following.

 a. What is the probability of observing a large difference between the means (D) if the two groups, 
control and experimental, are the same (H0)? In short, what is the probability of D, given H0?

However, the question that researchers often—and wrongly—try to answer with the p value is  
the reverse of a:

 b. What is the probability that the two groups, control and experimental, are the same (H0) if there is a 
large difference between their means (D)? In short, what is the probability of H0, given D?

Here is a simple analogy. Consider question c and its reverse, question d.

 c. What is the probability of a man’s feet being purple (P) if he has been stomping red grapes (G)?  
In short, what is the probability of P, given G?

 d. What is the probability that a man has been stomping red grapes (G) if his feet are purple (P)?  
In short, what is the probability of G, given P?

The probability in c is very high, perhaps 0.98, but the probability in d is lower, depending on the man’s 
circumstances. Clearly, the two questions are not equivalent and they should not be treated as though 
they were.

The Correct and Incorrect Conclusions
Suppose we observe a large difference between the means for our control and experimental groups, with 
p = 0.05. If the null hypothesis is true, then it is correct to conclude that the large difference we saw, or 
a larger one, would occur five out of every 100 times we ran the experiment. Another way to say this is 
that, if the null hypothesis (H0) is true, there is only a 5% probability of observing such a large difference 
between the means (D). With this conclusion, we have answered question a, for which the p value is 
appropriate.

It is incorrect to conclude that the null hypothesis (H0) has a 5% probability of being true because 
there was such a large difference between the means (D). This conclusion would be an effort to answer 
question b, for which the p value is inappropriate. And it is this question that some researchers mistak-
enly answer with the p value.

Using the grape-stomping analogy, we correctly conclude that 98 out of every 100 men have 
purple feet (P) if all the men have been stomping red grapes (G). In other words, if the men have 
indeed been stomping red grapes (G), then there is a 98% probability of finding one with purple feet 
(P). This answers question c. However, we incorrectly conclude that a man has a 98% probability of 
having been stomping red grapes (G) if his feet are purple (P). This would be a mistaken effort to 
answer question d.

how is the null hypothesis (H0) misleAding?
Strictly speaking, the assumption that H0 is true is often, if not always, wrong. In other words, we do not 
know that there is no difference between the means of two groups. On the contrary, there probably is a 
difference. For example, if we are establishing reference ranges for analyte Q in the two sexes, we measure 
its concentration in randomly selected men and women. If we see no statistically significant difference 
between the means of the two groups, then we conclude that H0 cannot be rejected.

However, if we measured the concentration of Q for every person in each sex (an impossible task), 
then there would almost certainly be a difference between the two means. Even if we failed to see such 
a difference at a precision of 0.1 mg/dL, it would appear as our precision increased, say to 0.0001 mg/
dL. The only question would be that of the size, or clinical meaningfulness, of the difference. This is 
the reason that many researchers now report effect size in addition to, or instead of, the p value. For an 
explanation of effect size, see Advanced Topic II, “Effect Size.”
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whAt do the terms “micron,” 
“lAmbdA,” And “gAmmA” meAn?
These terms come from older versions of the metric system, and are no longer acceptable in formal 
scientific or technical communications. However, some laboratorians still use them informally because 
of convenience or habit; so, it is reasonable to be familiar with them.

Micron = micrometer (μm)
Lambda = microliter (μL)
Gamma = microgram (μg)

cAn ph be negAtive?
Theoretically, yes, but a negative pH has little meaning. At a concentration of H+ of 1 mol/L, the pH is 
0. Therefore, as the concentration of H+ rises above 1 mol/L, the pH becomes negative. The familiar 
equation

pH = - log[H+]

is valid only for dilute acids and bases, because pH is actually a function of activity rather than concentra-
tion (see Advanced Topic IV, “Activity as Opposed to Concentration”):

pH = - log aH+

At high [H+] (or high [OH-]), activity differs enough from concentration that pH readings are unreliable. 
At very high concentrations, such as those of concentrated acids and bases, the difference is so large that 
specific gravity must be used to express the amount present per unit volume.

when Applied to Acids And bAses, Are “strength” 
And “concentrAtion” synonymous?
No. The strength of an acid or base is its tendency to lose or accept a hydrogen ion, respectively. By con-
trast, the concentration of an acid or base is its amount in solution (per unit volume or weight), regardless 
of strength. For example, acetic acid (CH3CO2H) is a weak acid whether its concentration in a given 
solution is high or low. But even a weak acid, such as acetic, can be dangerous if its concentration is high.

why does the ph scAle run from 1 to 14?
The pH scale runs from 1 to 14 because of the ion product of water (see Advanced Topic III, “Ion Product 
of Water”). In an aqueous solution, the concentrations of H+ and OH- always adjust themselves to keep 
their product equal to 1.0 * 10-14:

[H+][OH-] = 1.0 * 10-14

Taking the negative logarithm of each side gives

- log([H+][OH-]) = - log(1.0 * 10-14)

- log[H+] + - log[OH-] = 14

pH + pOH = 14

Just as the product of the [H+] and [OH-] is always 10-14, the sum of the pH and the pOH is always 14. 
Therefore, the pH scale of 1 to 14 is convenient for the acids and bases usually encountered in clinical and 
research laboratories, because their concentrations fall between 10-1 m (pH 1) and 10-14 m (pH 14). And 
whenever the concentration lies outside that range (i.e., whenever the pH is less than 1 or greater than 
14), its value is unreliable anyway (see Advanced Topic IV, “Activity as Opposed to Concentration”).
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Consider an example of KW in operation. If NaOH is added to water to a concentration of 0.01 m, 
then the final concentration of OH- in the solution is 0.01 m plus the starting concentration of OH-, 
which was 1.0 * 10-7 m:

[OH-]final = 0.01 m + 1.0 * 10-7 m = 0.0100001 m

However, the starting amount is so small relative to the added amount that the final concentration is, 
for all practical purposes, the same as 0.01 m:

[OH-]final = 0.01 m

In response to this increase in the concentration of OH-, the concentration of H+ falls from 1.0 * 10-7 m 
 down to 1.0 * 10-12 m, in order to satisfy KW:

KW = [H+][OH-] = (1.0 * 10-12 m)(0.01 m) = 1.0 * 10-14 m2

This adjusted H+ concentration corresponds to a pH of 12.

why is “mcg,” insteAd of “μg,” sometimes 
used to AbbreviAte “microgrAm”?
The proper symbol for the prefix “micro” is the Greek letter micron, or “μ.” Some clinics and hospitals, 
however, prefer the abbreviation “mc” because the handwritten letter “μ” can be mistaken for “M” or “m.” 
In those clinical settings, therefore, “mcg” refers to a microgram (and “mcL” to a microliter). In formal 
scientific contexts, however, the abbreviation “mcg” refers to a millicentigram, which actually equals 10 
micrograms:

1 mcg = 1 * 0.001 * 0.01 g = 0.00001 g = 10 * 10-6 g = 10 μg

is there An eAsy wAy to rAtionAlize the equAtions 
for celsius–fAhrenheit conversions?
To remember the equations more easily, memorize the ratio 180/100, or 9/5. From the freezing point 
to the boiling point, there are 180 degrees on the Fahrenheit scale (32° S 212°) and 100 on the Celsius 
scale (0° S 100°):

 100°C 212°F

 ∆ = 100 C° ∆ = 180 F°

 0°C 32°F

Therefore, there are 9 Fahrenheit degrees for every 5 Celsius degrees:

180 F°
100 C°

=
9 F°
5 C°

This means that the slope of the line relating Fahrenheit (y) to Celsius (x) is 9/5, or 1.8 (see the figure 
on the next page). Notice that the y-intercept, where water freezes, is 32°F. What all this means is 
that every Fahrenheit temperature is 32 greater than 9/5 times the Celsius temperature. Therefore, to 
convert from Celsius (the x-value) to Fahrenheit (the y-value), just multiply by the ratio 9/5 (or 1.8) 
and then add 32:

°F = a°C *
9
5
b + 32°
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To convert in the opposite direction, carry out the arithmetic in reverse: first, subtract 32 from the Fahr-
enheit temperature, and then divide by 9/5 (which is the same as multiplying by 5/9):

°C =
5
9

 (°F - 32°)

why do only some equilibrium 
constAnts AppeAr with units?
Strictly speaking, equilibrium constants do not have units; they are dimensionless. However, it is often 
helpful to keep the units because they serve as a check on the calculations. Consider, for example, this 
reaction in aqueous solution:

A(aq) + 2B(aq) ∆ 2C(aq)

The familiar equilibrium constant is

Keq =
[C]2

[A]1[B]2

Because each concentration is “m,” the unit on Keq has to be “m-1”:

Keq =
2

   #    2 =
1

=  -1

Therefore, if our calculation produces a unit of, say, “m2” or “m-3,” then we know the computation went 
wrong somewhere and we can look for the error.

But for the general reaction

aA(aq) + bB(aq) L cC(aq)

10050
0

Celsius Temperature

Celsius-Fahrenheit Conversion

F
ah

re
nh

ei
t T

em
pe

ra
tu

re

�50

�50

50

100

150

200

250

°F � (9/5)°C � 32

y � 1.8x � 32

m

m m m
m



230           Frequently ASkeD queStIonS AnD CoMMon MISunDerStAnDIngS 

the rigorous equation for Keq is

Keq =
¢ [C]

1   
≤c¢ [A]

1    
≤a¢ [B]

1    
≤b

when the solution is dilute with respect to all three solutes. The actual molar concentration of each is 
divided by its standard-state concentration, which is 1 m. Therefore, all the units in the equation cancel 
and Keq is dimensionless. For a detailed explanation of equilibrium constants, including the reason for 
canceling the units, see Advanced Topic I, “Equilibrium Constants.”

whAt Are the criteriA for choosing  
A meAsure of centrAl tendency?
The purpose of reporting the central tendency is to typify the data, that is, to give a value that is  
typical or representative of the results. The best measure of central tendency depends on the nature 
of the data.

For Continuous Variables
Continuous variables have equally spaced divisions and can take any value between the minimum and 
maximum of the range. For example, consider a glass cylinder graduated from 5 mL to 25 mL. The 
difference between 6 mL and 8 mL is exactly the same as the difference between 22 mL and 24 mL. 
Furthermore, the measured volume can take any value between 5 mL and 25 mL.

 a. If the distribution is normal, that is, if the data are symmetrical, then the best measure of central 
tendency is the mean.

 b. If the distribution is skewed, then the best measure of central tendency is the median. Outliers affect 
the median less than they do the mean.

m

m m
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For Ordinal Variables
The measure of central tendency for ordinal variables is the median or the mode. Ordinal variables consist 
of categories in a logical order, but the quantitative relationships among those categories are unknown. For 
example, consider an employee-satisfaction survey that offers five responses to each statement it makes:

1 = strongly disagree
2 = disagree
3 = neither agree nor disagree
4 = agree
5 = strongly agree

The numbers serve only to rank the responses—not to quantify them. In other words, this scale does 
not mean that someone who responds “5” agrees 1.25 times more strongly than someone who responds “4.” 
Similarly, it does not mean that a person who responds “1” agrees half as much as a person who responds “2.”

For another example, consider a subjective scale from 1 to 5 that a particular clinic asks patients to 
use for ranking their physical pain:

1 = mild
2 = moderate
3 = distressing
4 = intense
5 = unbearable

These numbers, “1” through “5,” represent categories. The following figure depicts some hypothetical 
results for this pain scale from 27 patients. The median of these data is “4.”
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 c. If the distribution is polymodal, that is, if the data have more than one peak, then there may be two 
populations, each having its own central tendency. In such a case, reporting one measure of central 
tendency for the entire data set might be misleading.
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It is impossible to conclude that level-4 pain is twice as severe as level-2 pain. Likewise, these data do 
not imply that a patient who reports “1” feels only 20% as much pain as a patient who reports “5.” Once 
again, the numbers serve only to rank the responses.

For ordinal data, the mean is inappropriate as a measure of central tendency because it incorrectly 
assumes that the numbers assigned to the categories have quantitative relationships. Neither the median 
nor the mode, however, makes this false assumption. The median is merely the value with the same 
number of responses above it as below it, and the mode is just the value with the most responses.

For Nominal Variables
The measure of central tendency for nominal (non-numerical) variables is the mode. For example, the 
following graph shows the frequency of side effects observed for a certain drug in a clinical trial. The 
mode for these data is “nausea.”
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Answer Key
Chapter 1
Practice Problems

 1. (a) -3 (b) 3 (c) -2 (d) -18.7 (e) 0.259 (f) 12.097 (g) 125 (h) -2.32 (i) 2  
(j) -0.00122 (k) 10,031 (l) 90

 2. (a) -7 (b) -90 (c) 80 (d) 33 (e) -21.3 (f) -366 (g) 330 (h) -0.0098 (i) 1650  
(j) 0.45 (k) -250,000 (l) -100

 3. (a) 1.978 (b) 7.5 (c) 0.164 (d) 2 (e) -0.4 (f) 2500 (g) -58.6 (h) -0.0055 (i) 400  
(j) -0.5 (k) 519 (l) 2.81

 4. (a) 
3
20

 (b) 8 
4
7

 (c) 
3
8

 (d) 
2
35

 (e) 2 
1
4

 (f) 
1
3

 (g) 3 
1
3

 (h) 2 
1
3

 (i) 
9
20

 (j) 
3
32

 (k) 1  

(l) 5000

 5. (a) 1 
3
10

 (b) 
5
12

 (c) 3 
13
24

 (d) 
1
10

 (e) 2 
1
4

 (f) 
4
39

 (g) 12 
1
2

 (h) 
41
56

 (i) 
9
10

 6. (a) 0.67 (b) 0.8 (c) 0.875 (d) 0.4 (e) 0.25 (f) 0.25

 7. 

Percentage Decimal Number Fraction

12 0.12
12

100
  or  

3
25

4 0.04
4

100
  or  

1
25

75 0.75
3
4

91 0.91
91

100

0.55 0.0055
0.55
100

  or  
0.11
20

33 0.33
1
3

 8. (a) 38 (b) 0.07056 (c) 0.616 (d) 66 (e) 3 (f) 0.005742

 9. (a) x = 9.5 (b) x = 32.2 (c) x = 3 (d) x = 10 (e) x = 4 (f) x = 0.28

 10. (a) x = 138 (b) x = 70 (c) x = 161.8 (d) x = 30 (e) x = 0.294 (f  ) x = 48

Contextual Problems

 1. (a)  LDL cholesterol = 190 mg/dL - 36 mg/dL - (288 mg/dL , 5) = 96 mg/dL

 (b) 175 mg/dL
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 (c) Algebraically rearrange the formula to isolate the total concentration of cholesterol:

LDL = total - HDL -
triglycerides

5

LDL + HDL +
triglycerides

5
= total

101 mg/dL + 46 mg/dL +
150 mg/dL

5
= 177 mg/dL

 (d) Algebraically rearrange the formula to isolate the concentration of triglycerides:

(LDL -  total + HDL) * (-5) = triglycerides

(129 mg/dL - 208 mg/dL + 59 mg/dL) * (-5) = 100 mg/dL

 2. The 23 patient specimens necessitate 23 * 0.10, or 2.3, volumes of stock reagent A. 
Therefore,

3 volumes of B
0.5 volumes of A

=
x

2.3 volumes of A

      Cross-multiplying gives

x = 13.8 volumes of B

 3. (a)  Group 4 is 1/2 of 1/3 of the 624 specimens. Thus, it comprises 104 specimens:

1
2

*
1
3

=
1
6

1
6

* 624 = 104

   One-fourth of these specimens equals 26. Therefore, if 26 of them have become 
unusable, then 78 good specimens remain in the group.

 (b) Group 2 is 1/3 of the 624 specimens, or 208. Three-eighths of that group consists of 
78 specimens:

3
8

* 208 = 78

 (c) Group 1 is 1/3 of the 624 specimens, or 208. Of these, 25% represents 52 specimens:

25% of 208 = 0.25 * 208 = 52

 4. (a) no. The hemoglobin value should be

14.4 = 4.8 * 3

      and the hematocrit should be

41 = 13.6 * 3

 (b) yes. The hemoglobin value is 5.1 * 3, and the hematocrit is 15.3 * 3, as both those 
numbers should be.

 (c) Because the hemoglobin value should be the rBC count * 3, then the rBC count 
should be the hemoglobin value divided by 3:

RBC count =
hemoglobin value

3

       Thus, because the hemoglobin value is 14.0, the rBC count should be 14.0 , 3, or 4.7.

 5. yes. The concentration is 3.9 g/dL:

56% of 7.0 g/dL = 0.56 * 7.0 g/dL = 3.9 g/dL
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 6. yes. The expected range for CsF glucose in this patient runs from 60% of 81 mg/dL up 
to 75% of 81 mg/dL:

60% of 81 mg/dL = 0.60 * 81 mg/dL = 49 mg/dL

75% of 81 mg/dL = 0.75 * 81 mg/dL = 61 mg/dL

 7. Let the unknown variable, x, be the glucose concentration at the time of collection.

Glucose concentration at time of collection = x

Change in glucose concentration during standing for 1 hour = 0.07x

x - 0.07x = 61 mg/dL

(1 - 0.07)x = 61 mg/dL

0.93x = 61 mg/dL

x =
61 mg/dL

0.93

x = 65.6 mg/dL (approximately 66 mg/dL)

 8. (a)  yes, there is enough acetonitrile left for today’s run. your colleague used 1/3 of 
the 1/2 that he took from your bottle. Thus, he used 1/6 of the original amount of 
acetonitrile:

1
3

*
1
2

=
1
6

  This means that 5/6 of the original amount remains between your half and the remain-
der that your colleague returns to you. Five-sixths is greater than 3/4—the minimum 
for today’s run. This inequality is easier to see when the fractions are expressed as 
decimal numbers:

5
6

= 0.83 is greater than 
3
4

= 0.75

 (b) not quite. Between your half and the 1/5 he returns to you, you have only 7/10, or 
70%, of the original amount, slightly less than the 75% (3/4) needed.

1
2

+
1
5

=
5
10

+
2
10

=
7
10

= 0.7 = 70%

 (c) Let the unknown variable, x, be the amount consumed in period 1.

Number of liters consumed in period 1 = x

Change in number of liters consumed = 0.30x

x + 0.30x = 4.6 L

(1 + 0.30)x = 4.6 L

1.30x = 4.6 L

x =
4.6 L
1.30

x = 3.5 L (rounded off from 3.538 L)
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 9. (a)  
400 mL methanol

90 mL water
=

320 mL methanol
x

(400 mL methanol)x = (90 mL water) (320 mL methanol)

x = 72 mL water

 (b) yes. The two ratios are equal:

400 mL methanol
90 mL water

=
600 mL methanol

135 mL water

4.44 mL methanol/mL water = 4.44 mL methanol/mL water

 (c) Doubling the ratio of methanol to water raises it from 4.44 to 8.88. Therefore, the 
volume of water you should mix with 500 mL of methanol is

8.88 mL methanol
mL water

=
500 mL methanol

x

(8.88 mL methanol)x = (mL water) (500 mL methanol)

x = 56.3 mL water

Chapter 2
Practice Problems

 1. (a) 104.8234 = 66,590 (b) 107.4771 = 30,000,000 (c) 102.3149 = 206.5 (d) 24 = 16 

  (e) 56 = 15,625 (f) 310 = 59,049 (g) 100.903 = 8 (h) 10-0.0969 = 0.8

  (i) 10-2.64 = 0.0023

 2. (a) log6 (67.193) = 2.3 (b) log (0.537) = -0.27 (c) log (1,000,000) = 6

  (d) log2 (16,384) = 14 (e) log (0.0001) = -4 (f) log5.1 (26.01) = 2

  (g) log (2137.96) = 3.33 (h) log (0.00251) = -2.6 (i) log4.9 (2.90) = 0.67

 3. (a) 2.48 (b) 4.04 (c) 5 (d) 2.303 (e) 7 (f) 6.50 (g) 4.99 (h) 631,000,000 

  (i) 1.39 (j) 128 (k) 0.956 (l) 0.631 (m) -1.35 (n) -0.357 (o) 5.01 * 10-8

 4. (a) 6.55 * 10-4 (b) 9.03 * 106 (c) 1.012 * 105 (d) 4 * 102

  (e) 1.65 * 10-1 (f) 3.7 * 1012 (g) 9.2 * 10-7 (h) 3.775 * 103

  (i)  1.602 * 104

 5. (a) 1,900,000 (b) 0.0004722 (c) 0.0090 (d) 551,000 (e) 6,080,000,000

  (f) -26,000 (g) 74,553,000 (h) -0.00883 (i) 205

 6. (b) The appropriate rule is

bm/bn = b(m-n)

  The value 4 is 2(m-n), which must equal 22. Therefore,

m - n = 2

  For example, m = 6 and n = 4.

 (c) The product rule for exponents is appropriate:

log x + log y = log xy

  The value 5 is log xy, which means that

105 = xy = 100,000

  For example, x = 100 and y = 1000.
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 (d) The appropriate rule is

(bncn) = (bc)n

  The value 2500 is (10 * 5)n, or 50n. Therefore, n = 2.

 (e) The appropriate rule is

n log x = log xn

  Thus, -12.5581 = n log x, where n = 6.2. Therefore,

log x = (-12.5581) , (6.2) = -2.0255

x = antilog (-2.0255) = 0.00943

 7. (a) 6.08955 (b) -5.0773 (c) -1.96 (d) -2.699209 (e) -3.469 (f) 9.986782

 8. (a) 0.1083 (b) 80,000 (c) 4599 (d) 120 (e) 7.71 * 10-6 (f) 3.689 * 1010

 9. By a factor of 104, or 10,000:

108

104 = 104

 10. The answer is b because

2 * (3.8 * 104) = 7.6 * 104 = 0.76 * 105

 11. The answer is a, b, and c. All three of these numbers are the same; each is 1/10 of 
9.7 * 10-5:

9.7 * 10-5

10
= 9.7 * 10-6

 12. The answer is a and b. They are equal, and each gives 10-2 when multiplied by 1000:

0.00001 * 1000 = 0.01 = 10-2

 13. Increasing the logarithm by 1 increases the argument by a factor of 10. For example, if 
y = 1000,

log x = 1 + log(1000)

= 1 + 3

= 4

Therefore,

x = antilog (4)

= 10,000

This means that x is 10 times greater than y:

x = 10y

 14. The number r is 1000 times smaller than q. Decreasing the logarithm by 3 decreases the 
argument by a factor of 103, or 1000. For example, if q = 100,000,

log(100,000) - 3 = log r

5 - 3 = log r

2 = log r

  Therefore,

r = antilog (2)

= 100
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 15.  The number c is the largest. The first equation shows that

log a - log b = 2

log(a/b) = 2

a/b = 102

a/b = 100

a = 100b

  and the second equation shows that

 log b + 3 = log c

 3 = log c - log b

 3 = log (c/b)

 103 = c/b

1000 = c/b

 1000b = c

  Therefore, a is 100 times greater than b, but c is 1000 times greater than b. The order 
is c 7 a 7 b.

 16. (a) (2.4 * 10-5)(4.6 * 103) = (2.4 * 4.6)(10-5 * 103) =  
 (2.4 * 4.6) * 10(-5+3) = 11 * 10-2 = 0.11

 (b) (7.08 * 106)(0.113) = (7.08 * 0.113) * 106 = 0.800 * 106 = 8.00 * 105

 (c) (3.55/3.8) * 10-7 = 0.93 * 10-7 = 9.3 * 10-8

 (d) (3.0/-3.0)(105/105) = -1.0 * 1 = -1.0

 (e) (-4.04 * 3.66)(108 * 10-8) = -14.8 * 100 = -14.8

 (f) (144/6.67) * (1/103) = 21.6 * 10-3 = 2.16 * 10-2

 17. 

sample calculations:

  (a) 
 log b - log a = log (b/a)

 5 - 2 = log (b/a)

 3 = log (b/a)

 antilog 3 = b/a

 103 = b/a

 1000 = b/a

  (f) 
log b - log a = log (b/a)

log b = log (b/a) + log a

        = log (100,000) + (-8)

  = 5 - 8

     = -3

log a log b b / a

(a) 2 5 1000
(b) 2 4 100
(c) 4 6 100
(d) 4 5 10
(e) -1 2 1000
(f) -8 -3 100,000
(g)  2.17 3.17 10
(h)  4.9 6.9 100
(i) -3.5 3.5 10,000,000
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 18. (a) True.

log x = log y

antilog (log x) = antilog (log y)

x = y

 (b) True.
log x = 2 log y

antilog (log x) = antilog (2 log y)

10(log x) = 10(2 log y)

 x = (10log y)2 (Power Rule)

x = y2

  Prove by setting the value of y at, say, 10,000

 x = y2

 x = (10,000)2

 x = (104)2

 x = 108

  Therefore,

log (108) = 2 log (104)

8 = 2(4)

8 = 8

 (c) True.

log (10,000) = 4 and log (100,000) = 5

  Because 28,446 lies between 10,000 and 100,000, its logarithm lies between 4 and 5.

 (d) True.

log (1,000,000) = 6 and log (10,000,000) = 7

  Because 6.39 lies between 6 and 7, its argument lies between 1,000,000 and 
10,000,000.

 (e) False.

log x = -4

antilog (log x) = antilog (-4)

10(log x) = 10-4

x = 10-4

x = 0.0001

  Therefore, x 6 y because 0.0001 6 0.00025.

 (f) True.

log x = -7.3

antilog (log x) = antilog (-7.3)

10(log x) = 10-7.3

x = 10-7.3

  Therefore, because 10-7.3 is greater than 10-8, x is greater than y.
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 (g) True.

 y = 10x

 log y = log (10x)

  log y = log 10 + log x (Product Rule)

 log y = 1 + log x

  log y = log x + 1

  Therefore, log y is larger than log x by 1. Prove this by setting the value of x at, say, 
10,000

y = 10x

y = 10(10,000)

y = 100,000

  Then, substitute:

 log y = 1 + log x

 log (100,000) = 1 + log (10,000)

 log (105) = 1 + log (104)

 5 = 1 + 4

 5 = 5

 (h) True.

 x = (1/1000)y

 x = 0.001y

 x = (10-3)y

 log x = log [(10-3)y]

  log x = log 10-3 + log y (Product Rule)

 log x = (-3) + log y

 log x = log y - 3

  Therefore, log x is less than log y by 3. Prove this by setting the value of y at, say, 
1,000,000:

x = (10-3)y

x = (10-3)(1,000,000)

x = (10-3)(106)

 x = 10(-3+6)  (Product Rule)

x = 103

  Then, substitute:

 log x = log y - 3

 log (103) = log (106) - 3

 3 = 6 - 3

 3 = 3

Contextual Problems

 1. W: yes, they achieved it. A 1-log drop from the previous viral load of 13,200,000 would 
be 1,320,000. The present load, however, is 1,200,000, representing more than a 1-loga-
rithm drop.
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  X: yes, they achieved it. A 1-log drop from the previous viral load of 2.4 million would be 
240,000. The present load, however, is 230,000, representing more than a 1-logarithm drop.

  Y: no, they did not achieve it. A 1-log drop from the previous viral load of 990,000 would be 
99,000. The present load, however, is 120,000, representing less than a 1-logarithm drop.

  Z: yes, they achieved it. A 1-log drop from the previous viral load of 1.9 * 106 would be 
1.9 * 105. The present load, however, is 1.8 * 105, representing more than a 1-loga-
rithm drop.

 2. N: 1 log. One way to approach this problem is to calculate the ratio of the present 
load to the previous load:

380,000
4,400,000

= 0.086

  what this means is that the present load is slightly less than 1/10 of the previous load; 
that is, the load has fallen by a factor of somewhat more than 10, or more than 1 loga-
rithm. Another approach to this question is to take the ratio of the previous load to the 
present load, which is just the reciprocal of the ratio above.

4,400,000
380,000

= 11.6

  what this means is that the previous load was more than 10 times higher than the pres-
ent load. Therefore, the load has indeed fallen by a factor of slightly more than 10, or 
more than 1 logarithm.

  O: 2 logs. The ratio of the present load to the previous load is

75,000

9.6 * 106 = 0.008

  The present load, therefore, is less than 1/100 (0.01) of the previous load, that is, the load 
has fallen by a factor of more than 100, or more than 2 logarithms. Alternatively, the ratio 
of the previous load to the present load is 128, meaning that the previous load was more 
than 100 times, or 2 logarithms, greater than the present load.

  P: 2 logs. The ratio of the present load to the previous load is 0.01.

  Q: 3 logs. The ratio of the present load to the previous load is 0.0005.

 3. (a)  There are at least two advantages: (1) logarithms are easier to write and read than are 
counts, and (2) logarithms make it easier to discern at a glance whether the present 
result differs from the previous result by a factor of 10.

 (b) The count is the antilog of 6.933, which is 106.933, or 8,570,000 counts/mL.

 (c) The log of 18,450,000 is 7.266.

 (d) To calculate the factor by which the load decreased, convert each logarithm into 
“counts/mL” and then take the ratio. Before treatment, the log was 7.223, which cor-
responds to a viral load of 107.223, or 16,700,000. After treatment, it was 4.187, which 
corresponds to a viral load of 104.187, or 15,400. The ratio of “before treatment” to 
“after treatment” is

 
load before treatment
load after treatment

=
16,700,000

15,400
= 1080

Therefore, the viral load decreased by a factor of 1080, which is more than 3 orders 
of magnitude, or more than 3 logarithms. This accords with the difference between 
the two logarithms themselves: 7.223 - 4.187 = 3.036.

 4. (a) 2,300,000 copies/mL

884,000 IU/mL a2.6 copies/mL

1 IU/mL
b = 2,300,000 copies/mL

 (b) 9,700,000 IU/mL

1.45 * 107 copies/mL a 1 IU/mL
1.5 copies/mL

b = 9,700,000 IU/mL
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 (c) 1,420,000 IU/mL

 (d) The answer is 539,000 IU/mL. First, calculate the copies/mL from the logarithm, which 
is 6.223: 106.223 = 1,670,000 copies/mL. next, convert this value into “IU/mL”:

1,670,000 copies/mL a 1 IU/mL
3.1 copies/mL

b = 539,000 IU/mL

 (e) The answer is 6.511. First, at 2.7 copies per IU, 1.2 million IU/mL equals 3,240,000 
copies/mL. The logarithm of that number is 6.511.

 5. Laboratory 2 found the highest amount of viral rnA. First, convert all three results into a 
common unit, say, “copies/mL.” Thus, Laboratory 1’s result is the antilog of 7.548, which 
is 107.548, or 35,300,000 copies/mL. Laboratory 3’s result is equivalent to 31,900,000 
copies/mL:

1.45 * 107 copies/mL a 1 IU/mL
2.2 copies/mL

b = 31,900,000 IU/mL

 6. (a)  no. The reduction would have been 1000-fold or greater only if the difference 
between the two logarithms had been at least 3.

 (b) Patient B. The difference between the two logarithms is 2.0, corresponding to 102, 
or 100.

 (c) 97%. The logarithms 2.64 and 1.17 correspond to cell numbers of 440 and 15, respec-
tively. Thus, the difference is 425, which is 97% of 440.

 7. (a) 0.61 (b) 29% (c) 0.66 (1 - 0.34 = 0.66) (d) 0.086 (A = - log[1 - 0.18])

  (e) 0.301 (A = - log[0.5]) (f) 0.022 (A = - log[0.95])

 8. (a) 

Concentration (mIU/mL) A450 Log of Concentration Log(A450)

2.50 0.042 0.398 -1.38
5.00 0.081 0.699 -1.09
20.0 0.319 1.301 -0.496
50.0 0.773 1.699 -0.112
100. 1.459 2.000 0.1641
200. 2.586 2.301 0.4126
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  (3)
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  (4)

 (c) The spacing among the data points is more uniform, allowing for a more accurate 
visual interpretation, especially at low concentrations.

 (d) The plot is linear, allowing for an easier visual interpretation, especially at low 
concentrations.

 (e) Data are plotted directly, without the need for converting to logarithms.

 9. (a) 

0

0.5

1

1.5

2

0 200 400 600 800 1000

Concentration 
(mIU/mL) A450

Log of 
Concentration Log(A450)

 12.0 0.019 1.079 -1.72
 32.0 0.056 1.505 -1.25
 97.0 0.171 1.987 -0.767
249  0.448 2.396 -0.349
495  0.814 2.695 -0.0894
890. 1.507 2.949    0.1781

 (b) 

  (1)
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  (2)
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  (3)

  (4)

 (c) The spacing among the data points is more uniform, allowing for a more accurate 
visual interpretation, especially at low concentrations.

 (d) The plot is linear, allowing for an easier visual interpretation, especially at low 
concentrations.

 (e) Data are plotted directly, without the need for converting to logarithms.

 10. (a) 

Concentration 
of Endogenous 

Vitamin D  
(ng/mL)

% of Added  
Radiolabeled  

Vitamin D Bound to 
Antibody (%Bound)

Log of  
Concentration

Log 
(%Bound)

0.500 96.00 -0.301 1.9822
5.00 82.36 0.699 1.9157
12.0 61.57 1.079 1.7894
20.0 44.25 1.301 1.6459
40.0 28.05 1.602 1.4479
100. 16.68 2.000 1.2222
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 (b) 

  (1)

  (2)

Tube
Chemical 
Substance

Result for Protein Q 
(pg/mL)

Relative Result 
for Protein Q

1 none 3.4 1.0
2 caffeine 3.5 1.0
3 vancomycin 6.7 2.0
4 acetaminophen 4.0 1.2
5 lead 1.7 0.50
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  (3)

 (c) The “0” value corresponds to a vitamin D concentration of 1 ng/mL. This is so because 
100 = 1. The “1” value corresponds to 10 ng/mL because 101 = 10. The “1.8” value 
corresponds to 63 ng/mL because antilog (1.8) = 63.

 (d) It is easier to see the change in the y value as the concentration changes in the 
middle and high ranges.

 (e) It is easier the see the change in the y value as the concentration changes in the low 
range.

 (f) The logarithm is negative at concentrations less than 1, complicating interpretation 
of the graph.

 11. (a) 
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 (b) Vancomycin multiplies the result by 2, and lead divides it by 2.

 (c) Tube 1: log 1.0 = 0. Tube 3: log 2.0 = 0.301. Tube 5: log 0.50 = -0.301.

 (d) The logarithms for vancomycin and lead are equal and opposite, showing that they 
affect the result by the same factor but in opposite directions.

Chapter 3
Practice Problems

 1. (a) 42.8 (b) 0.2 (c) 106.0 (d) 9.0 (e) 0.8 (f) 50.1 (g) 2866.0 (h) 17.1 (i) 7.0 

  (j) 33.6 (k) 0.7 (l) 91.2

 2. (a) 13,410 (b) 20 (c) 510 (d) 70 (e) 380 (f) 4600 (g) 1010 (h) 220  (i) 50 

  (j) 9.07 * 103 (k) 2.286 * 104 (l) 600

 3. (a) 3 (b) 28 (c) 103 (d) 100 (e) 18,405 (f) 4 (g) 55 (h) 600 (i) 1003 (j) 8 

  (k) 9091 (l) 14

 4. (a) 4.134 (b) 0.932 (c) 12.002 (d) 8 * 10-3  (e) 20.009 (f) 20.010

  (g) 7.2 * 10-2 (h) 0.203 (i) 61.774 (j) 15.001 (k) 2.491 (l) 185.237

 5. (a) 5.02 (b) 199.76 (c) 0.69 (d) 2 * 10-2  (e) 2.51 (f) 35.38 (g) 0.03 (h) 1.00

 (i) 40.53 (j) 0.02 (k) 9.08 (l) 58.11

 6. (a) 4 (b) 1 (c) 3 (d) 5 (e) 4 (f) 3 (g) 6 (h) 3 (i) 2 (j) 3 (k) 7 (l) 1 (m) 3 

  (n) 2 (o) 3 (p) 5 (q) 6 (r) 4 (s) 2 (t) 2

 7. (a) 3 (b) 4 (c) 2 (d) 5 (e) 4 (f) 5 (g) 2 (h) 5 (i) 1 (j) 4 (k) 1 (l) 5

 8. (a) -3.437 (b) 5.0282 (c) 3.85 (d) -2.00842 (e) 6.3010 (f) -8.39728 

  (g) 13.70 (h) -7.76195 (i) 5.8 (j) 2.8866 (k) -11.1 (l) 4.47714

 9. we report measurements such that only the last digit is uncertain.

 (a) 0.088 (calculated value = 0.08794) The digit in the second decimal place, an “8,” is 
the same in all five measurements. But the digit in the third decimal place is the first 
one to vary. Therefore, the average may have no more than three decimal places.

 (b) 2.6 (calculated value = 2.630) The first uncertain digit in the five measurements 
occupies the first decimal place. Therefore, the final answer must terminate there.

 (c) 60 (calculated value = 60.2) The first uncertain digit in the six measurements is in 
the tens place. Therefore, we should round the final answer to the nearest 10. note 
the absence of a decimal point in the final answer, telling us that the zero is not 
significant.

 (d) 1.24 (calculated value = 1.238) The first uncertain digit in the six measurements is 
in the second decimal place. Therefore, the final answer may include both decimal 
places.

 (e) 7.6 * 104 (calculated value = 7.61 * 104) The first uncertain digit in the five measure-
ments is in the first decimal place. Therefore, the final answer must terminate there.

 10. (a) 4 (b) 3 (c) 5 (d) 5 (e) 4 (f) 2

 11. (a) 3 (b) 4 (c) 3 (d) 4 (e) 1 (f) 5

 12. (a)  rounding to even numbers would not change the average. The two values of “13.5” 
would be rounded up under either rounding rule.

 (b) rounding to even numbers would change the average. The value “137.5” would be 
rounded up under either rule. The values “136.5” and “134.5”, however, would be 
rounded up under the standard rule but down under the even-number rule.

 (c) rounding to even numbers would change the average. The value “43.5” would be 
rounded up under either rule. The values “46.5” and “42.5,” however, would be 
rounded up under the standard rule but down under the even-number rule.
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 (d) rounding to even numbers would not change the average. The value “1.5” would 
be rounded up under either rounding rule.

 13. (a) 
0.005
4.667

= 0.001 = 0.1% (b) 0.7% (c) 3%

 14. (a) 
0.005
0.48

= 0.01 = 1% (b) 2% (c) 0.3%

 (d) 1.7% (note decimal point in measurement.) (e) 0.1% (f) 2.5% (g) 17% (h) 0.7%

 15. (a) sTeP 1: 19.2 + 8.66 = 27.86, rounded to 27.9

sTeP 2: 27.9 * 1.3 = 36.27, rounded to 36

 (b) 12.2 (c) 0.007511

 (d) sTeP 1: 7.9 * 1.44 = 11.376, rounded to 11

sTeP 2: 13.62 - 11 = 2.62, rounded to 3

 (e) 11.083 (f) 5815 (g) 134 (h) 1.1 (i) 400,000 (j) 0.0038

 16. (a) 39 (b) 25 (c) 20. (d) 89 (e) 61 (f) 8 (g) 32 (h) 104 (i) 2 (j) 50. (k) 30. 

  (l) 122 (m) 1 (n) 77 (o) 10. (p) 100.

 17. (a) 39 same value, same implied range, nO bias.

 (b) 26 Implied range: 25.5–26.5. Implied range in #16: 24.5–25.5. Bias = 1.

 (c) 20. (same) (d) 90 (bias = 1) (e) 61 (same) (f) 8 (same) (g) 32 (same) 

 (h) 104 (same) (i) 2 (same)  (j) 50. (same) (k) 30. (same) (l) 123 (bias = 1)

 (m) 2 (bias = 1) (n) 77 (same) (o) 10. (same) (p) 100. (same)

 18. 

Row Mass of an Object (g) Implied Range (g) Implied Relative Uncertainty

1 480 475–485 2.1%

2 480. 479.5–480.5 0.21%

3 480.0 479.95–480.05 0.021%

4 48 47.5–48.5 2.1%

what the completed table confirms is the rule that trailing zeros are significant only if a 
decimal point is present in the number.

The zero in “480” in row 1 is not significant. removing that zero to give “48” (row 4) 
fails to change the implied relative uncertainty. In other words, that particular zero 
gives no information about precision in the measurement, confirming its status as a 
nonsignificant figure.

By contrast, the zero in “480.” in row 2 is significant. removing that zero does change 
the implied relative uncertainty, meaning that the zero does indeed give information 
about precision.

This observation confirms the zero’s status as a significant figure. One can draw the same 
conclusion from the removal of both zeros from “480.0” in row 3.

Contextual Problems

 1. (a)  The value implies astonishing precision. The manufacturer is saying that the average 
life expectancy of its lamp falls between 2118.55 hours (2118 hours, 33 minutes) and 
2118.65 hours (2118 hours, 39 minutes). Thus, the manufacturer claims to know how 
long, on average, its lamp lasts, plus or minus only 3 minutes. In the absence of sup-
porting data, this assertion is unjustifiable.

 (b) no. The value of 2100 hours implies a range of 2050–2150 hours. Because the com-
petitor’s lamp life of 2060 hours falls within that range, we cannot conclude that 
manufacturer A’s lamp lasts longer.
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 (c) The lower value (9.66 μg/mL) has three significant figures, whereas the higher value 
(102.17 μg/mL) has four. This implies that the precision of your method increases with 
the concentration.

 (d) no. The ratio of 6.1 mg/dL to 2.2 mg/dL should have no more than two significant fig-
ures. Therefore, it would be proper to say that the concentration rose 2.8-fold.

 2. we should round the value to “9.0 pg/mL.” The implied relative uncertainty in “9.0” is 
the same as the relative uncertainty in the original value.

Value  
(pg/mL)

Absolute Uncertainty  
(pg/mL)

Relative 
Uncertainty

8.94 0.05 0.6%

9 0.5 6%

9.0 0.05 0.6%

 3. (a) The best value is 5.5 ng/mL. The reasoning follows.

  (i)  The unrounded average is 5.539 ng/mL, which implies more precision than is pres-
ent in the original values.

  (ii)  rounding the average to 5.54 is unreasonable because it places the true average 
between 5.535 and 5.545, a range that is unjustifiably small because it implies cer-
tainty in the first two digits, even though there are no certain digits in the raw data.

  (iii)  rounding the average to “6” is risky because only 3 of the 10 concentrations are 
higher than that value and because it has much less precision than the data have.

  (iv)  reporting “5.5” is a good compromise between a value (“6”) that may be too 
high and that has too little precision and a value (“5.54”) that carries too much 
precision.

 (b) The best value is 5.6 ng/mL. The reasoning follows.

  After rounding to one decimal place, the values are these (in the same order as 
above):

4.5 5.0 3.5 6.8 7.7 9.2 4.9 5.7 3.3 4.9 (ng/mL)

  (i)  The unrounded average of these values is 5.55 ng/mL, but that suggests the range 
for the true average to be 5.545 to 5.555. As in part a above, this is unjustifiably 
small because it implies certainty in the first two digits, even though there are no 
certain digits in the data.

  (ii)  Also as in part a, rounding the average to “6” is risky because only 3 of the 10 
concentrations are higher than that value and because it has a high implied rela-
tive uncertainty (8%).

  (iii)  The value “5.6,” however, is a good compromise between a value (“6”) that may 
be too high and that has too little precision and a value (“5.55”) that carries too 
much precision.

 (c) The bias is 0.1 ng/mL. The average of 5.5 in part a implies a range for the true aver-
age of 5.45 to 5.55, whereas the average of 5.6 in part b implies a range of 5.55 to 
5.65. Thus, the range shifted up by 0.1.

 (d) The best value is 6 ng/mL. After rounding by the researcher, the values are these (in 
the same order as above):

5 5 4 7 8 9 5 6 3 5 (ng/mL)

  (i)  The average of these whole numbers is 5.7 ng/mL. each whole-number value has 
an uncertainty of 0.5, which gives an implied relative uncertainty ranging from a 
high of 17% for the “3” down to 6% for the “9.”

  (ii)  The value of “5.7” has an implied relative uncertainty of 0.9%, which represents 
too much precision for the values as written.

 4. The unrounded average is “4,728,333.” Because the average in this case may not have 
more than four significant figures, we immediately round it to “4,728,000.” each count 
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carries an uncertainty of 500 and an implied relative uncertainty of 0.01%. reporting 
the average as “4,728,000” is risky for at least two reasons:

 (a) It implies that the “7” and “2” are known with confidence and that only the “8” is an 
estimate.

 (b) It puts the true average between 4,727,500 and 4,728,500, which implies too much 
certainty, given that the first “7” and the “2” are each questionable.

Listed in the table below, there are three other rounding options: the nearest million, 
nearest 100,000, and nearest 10,000.

Chapter 4
Practice Problems

 1. (a) 3.1 mL *
L

1000 mL
*

1 * 106 μL

L
= 3100 μL

 (b) 420 ng *
g

1 * 109 ng
*

1000 mg

g
= 4.2 * 10-4 mL (c) 2 μL (d) 780 ng 

  (e) 0.85 L (f) 1.445 g (g) 36.4 mL (h) 0.013 ng (i) 0.620 μmol (j) 0.097 mmol 

  (k) 400 mL (l) 0.073 mg (m) 0.400 mL (n) 250 pg (o) 0.0609 mol (p) 6.2 dL 

  (q) 705,000 pmol (r) 2000 pg

 2. (a) 74.55 g/mol (b) 17.04 g/mol (c) 212.10 g/mol

 (d) (2 * 22.99 g/mol) + 32.07 g/mol = 78.05 g/mol (e) 95.21 g

 3. (a) 3.50 g *
mol

58.44 g
= 0.0599 mol (b) 0.137 (c) 0.012 (d) 10.8 (e) 0.00314

 4. (a) 98.6°F (b) 179.6°F (c) 284°F (d) -4°F (e) 39.2°F

 5. (a) 22.2°C (b) 110°C (c) -21.7°C (d) 7.2°C (e) -12.2°C

 6. (a) 273.15 K (b) 373.15 K (c) 0 K

 7. (a) 53 km *
mi

1.61 km
= 32.9 mi (b) 14.2 cm (c) 58.2 kg (d) 70.4 oz

 (e) 31 ft *
mi

5280 ft
*

1.61 km
mi

*
1000 m

km
= 9.5 m (f) 3.2 km (g) 2.3 gal

 (h) 47.2 mL (i) 5.8 L

Average After 
Rounding 
(RBCs/μL)

Absolute Uncertainty 
(RBCs/μL)

Implied 
Relative 

Uncertainty Strengths Weaknesses

5,000,000 500,000  10% 1. Lies outside range of actual counts.

2.  relative uncertainty is 1000 times higher 
than that of actual counts.

3.  Changes the certain digit “4” to the  
uncertain “5.”

4,700,000 50,000   1% 1. retains the certain digit “4.”

2. Lies near center of actual counts.

1. retains the uncertain digit “7.”

2.  relative uncertainty is 100 times higher 
than that of actual counts.

4,730,000 5000 0.1% 1. retains the certain digit “4.”

2. Lies near center of actual counts.

3.  Of all three rounding possibilities, 
implied relative uncertainty is  
closest to that of actual counts.

1. Has two uncertain digits: “7” and “3.”

2.  relative uncertainty is 10 times higher than 
that of actual counts.
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Contextual Problems

  1. First, convert one of the units into the other:

1 mL *
1 L

1000 mL
*

1 * 1015 fL
1 L

= 1 * 1012 fL

next, we take the ratio of the 1-mL volume to the 90-fL volume:

1 * 1012 fL
90 fL

= 1.1 * 1010

Thus, we conclude that 1.1 * 1010 (11 billion) red blood cells could theoretically occupy 
a volume of 1 mL.

  2. First, convert one of the units into the other:

250 mL *
L

1000 mL
= 0.250 L

next, set up an equation of ratios:

 
30 mL concentrate

0.250 L solution
=

x
1 L solution

 (30 mL concentrate)(1 L solution) = (0.250 L solution)x

 120 mL concentrate = x

  3. 450 mg *
g

1000 mg
= 0.450 g

 4. 0.080 mL *
L

1000 mL
*

1 * 106 μL
L

= 80 μL

This step can be shorter because 1 μL = 0.001 mL. Therefore, just multiply the number 
of milliliters by 1000 to give the number of microliters:

0.080 mL * 1000 μL/mL = 80 μL

 5. (a) Here are four approaches to this problem.

APPROACh 2
Use the relationship that 1 ng = 1000 pg.

628 pg

mL
*

ng

1000 pg
*

1000 mL
L

=
628 ng

L

APPROACh 1
straightforward dimensional analysis.

628 pg

mL
*

g

1 * 1012 pg
*

1 * 109 ng

g
*

1000 mL
L

=
628 ng

L
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APPROACh 3
Two-step reasoning.

Step 1. 
628 pg

mL
*

ng

1000 pg
=

0.628 ng

mL

Step 2.  every mL contains 0.628 ng. Thus, 1 L, which is 1000 mL, contains 1000 
times as much, or 628 ng. The concentration is 628 ng/L.

APPROACh 4
The ratio method.

1 * 1012 pg

g
=

628 pg

x
  x = 6.28 * 10-10 g

g

1 * 109 ng
=

6.28 * 10-10 g

x
  x = 0.628 ng

Because 1 L = 1000 mL,

0.628 ng

mL
=

x
1000 mL

  x = 628 ng

Therefore, there are 628 ng in every liter.

 (b) 19.8 pmol/mL (c) 17.4 mg/mL (d) 49 μmol/dL

Chapter 5
Practice Problems

 1. In each case, calculate the number of grams present in 100 mL of solution. Given that 
100 mL is the same as 0.1 L, we may solve problem a  this way:¢400 g

1 L
≤ ¢ 0.1 L

100 mL
≤ = 40 g/100 mL = 40% (w/v)

And because 100 mL = 1 dL, we might also solve the problem this way:¢400 g

1 L
≤ ¢0.1 L

dL
≤ = 40 g/dL = 40% (w/v)

 (b) 12% (w/v) (c) 0.9% (w/v)  (d) 0.5% (w/v) (e) 0.08% (w/v) (f) 6.16% (w/v)

 2. (a)  The total solution mass is 800 g + 9.2 g = 809.2 g. Therefore, the concentration is 
the mass of the solute divided by the total solution mass:

9.2 g

809.2 g
* 100% = 1.1% (w/w)

 (b) 9% (w/w)  (c) 0.8% (w/w)

 3. The concentration is the volume of alcohol divided by the total solution volume:

50 mL
150 mL

* 100% = 33% (v/v)
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 4. (a)  4.0 g¢ mol
56.1 g

≤ ¢ 1
1 L

≤ = 0.071 m (b)  60.0 g¢ mol
58.5 g

≤ ¢ 1
0.400 L

≤ = 2.56 m

 (c) 9.0 * 10-4 m (d) 0.014 m (e) 0.10 m (f) 2.37 * 10-3 m

 5. (a) 1 mol KCl = 1 eq KCl. Therefore,

14.9 g¢ mol
74.6 g

≤ ¢ 1
0.200 L

≤ = 1.0 N

 (b) 4 N (c) 2.0 N

 6. sample calculation, first row in the table. A 1.0 m solution of MgCl2 is the same as 
0.10 moles per 100 mL:

1.0 mol
L

=
0.10 mol
100 mL

Therefore, it is necessary to convert “0.10 moles” into “grams” (formula mass of MgCl2 
is 95.21 g/mol):

95.21 g

1.0 mol
=

x
0.10 mol

  x = 9.5 g (in 100 mL)

Thus,

9.5 g

100 mL
* 100% = 9.5% (w/v)

sample calculation, second row in the table. At 2.6% (w/v), the solution has 2.6 g of 
MgCl2 in every 100 mL.

2.6% (w/v) =
2.6 g

100 mL

Therefore, it is necessary to convert “2.6 grams” into “moles”:

95.21 g

1 mol
=

2.6 g

x
  x = 0.027 mol (in 100 mL, or 0.1 L)

The number of moles in 1 liter, then, is

0.027 mol
0.1 L

= 0.27 mol/L = 0.27 m

Molarity % (w/v)

2.0 12

0.15 0.90

1.7 * 10-3 0.0099

2.74 16.0

0.082 0.48

 7. see problem 6 for sample calculations (formula mass of naCl is 58.44 g/mol).

Molarity % (w/v)

1.0 9.5

0.27 2.6

3.4 * 10-4 0.0032

3.06 29.1

0.0025 0.024
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 8. see problem 6 for sample calculations (formula mass of glucose is 180.16 g/mol).

Molarity % (w/v)

0.80 14

0.28 5.0

9.6 * 10-4 0.017

0.046 0.83

0.066 1.2

Contextual Problems

 1. A result of 2.3 mmol/L is within range. Dimensional analysis converts mmol/L to mg/dL:

2.3 mmol ¢ 1 mol
1000 mmol

≤ ¢40.08 g

mol
≤ ¢1000 mg

g
≤ ¢ 1

10 dL
≤ = 9.2 mg/dL

The ratio method gives the same result:

1000 mmol
1 mol

=
2.3 mmol

x
  x = 0.0023 mol

1 mol
40.08 g

=
0.0023 mol

x
  x = 0.092 g

1 g

1000 mg
=

0.092 g

x
  x = 92 mg

92 mg

10 dL
= 9.2 mg/dL

A result of 4.8 meq/L is also within range. remember that because 1 mole of Ca2+ can 
theoretically replace 2 hydrogen ions, it is the same as 2 equivalents:

1 mol Ca2+ = 2 Eq Ca2+

Likewise, 1 millimole is the same as 2 milliequivalents:

1 mmol Ca2+ = 2 mEq Ca2+

Therefore, 4.8 meq/L equals 2.4 mmol/L, which falls in the reference range:

4.8 mEq Ca2+¢1 mmol Ca2+

2 mEq Ca2+ ≤ = 2.4 mmol (the amount in every liter)

By the ratio method:

2 mEq Ca2+

1 mmol Ca2+ =
4.8 mEq Ca2+

x
  x = 2.4 mmol Ca2+ (the amount in every liter)

 2. A result of 2.6 meq/L is not within range. Dimensional analysis converts meq/L to mg/dL:

2.6 mEq ¢0.5 mmol
1 mEq

≤ ¢ mol
1000 mmol

≤ ¢24.305 g

mol
≤ ¢1000 mg

g
≤ ¢  

1
10 dL

≤ = 3.2 mg/dL

The mass present  
in 1 L (in 10 dL)

The final concentration  
in the new units
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A result of 0.8 mmol/L is within range:

0.8 mmol¢ mol
1000 mmol

≤ ¢24.305 g

mol
≤ ¢1000 mg

g
≤ ¢ 1

10 dL
≤ = 1.9 mg/dL

 3. To go from pH to [H+], rearrange equation 4 to give

10-pH = [H+]

Thus, we can solve the first row of the table using this equation:

10-3.90 = [H+]

1.26 * 10-4  = [H+]

Going from [H+] to pH requires direct substitution into equation 4. The second row of 
the table gives

pH = - log(1.91 * 10-6)

pH = 5.72

 4. To go from pH to [H+] in “mol/L,” use the same equations as in problem 3 above. But to 
convert from mol/L to mmol/L, multiply by 1000; to convert from mmol/L to mol/L, divide 
by 1000. Thus, the first row of the table gives [H+] = 0.00245 m, which is equal to 2.45 mm.

In the second row, [H+] = 0.0200 mm, which is the same as 2.00 * 105 m. The corre-
sponding pH is 4.70.

ph [h+] (m)

3.90 1.3 * 10-4

5.72 1.9 * 10-6

7.05 8.9 * 10-8

9.640 2.29 * 10-10

11.38 4.2 * 10-12

13.060 8.71 * 10-14

ph [h+] (mm)

2.616 2.42

4.699 0.0200

7.00 1.0 * 10-4

10.149 7.10 * 10-8

12.27 5.4 * 10-10

14.000 1.00 * 10-11

 5. The total mass is 721 g (0.721 kg). A 2.00 m solution contains 2 moles (360 g, 0.360 kg) 
of glucose for every kilogram of water present. Thus,

1 kg water + 0.360 kg glucose = 1.360 kg of solution

Glucose accounts for 26.5% of the solution’s mass:

0.360 kg of glucose

1.360 kg of solution
* 100% = 26.5%

The total mass of glucose, then, is 26.5% of 2720 g, or 721 g (0.721 kg):

0.265 * 2720 g = 721 g

m
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 6. 

Analyte Your Result Result in Requested Units

creatinine (112.3 g/mol) 6.4 mg/L 57 μm

folic acid (441.6 g/mol) 14 ng/mL 32 nmol/L

phenobarbital (230.8 g/mol) 15 μg/mL 65 μm

lead 4.2 μm 870 μg/L

phosphorus 1.62 mm 50.2 mg/L

iron 22.9 μmol/L 1280 μg/L

glucose 160 mg/dL 8.9 mmol/L

uric acid (168.1 g/mol) 77 mg/L 458 μm

sample calculation, first row in the table.¢6.4 mg

L
≤ ¢ g

1000 mg
≤ ¢ mol

112.3 g
≤ ¢106 μmol

mol
≤ = 57 μmol/L = 57 μm

By the ratio method:¢1000 mg

1 g
≤ = ¢6.4 mg

x
≤  x = 0.0064 g¢112.3 g

1 mol
≤ = ¢0.0064 g

x
≤  x = 5.7 * 10-5 mol¢ 1 mol

1 * 106 μmol
≤ = ¢5.7 * 10-5 mol

x
≤  x = 57 μmol

57 μmol
1 L

= 57 μmol/L = 57 μm

 7. yes. The concentration is 0.62% (w/v).¢0.083 mol
L

≤ ¢74.44 g

mol
≤ ¢ 1 L

10 dL
≤ = 0.62 g/dL = 0.62 g/100 mL = 0.62% (w/v)

By the ratio method:¢ 1 mol
74.44 g

≤ = ¢0.083 mol
x

≤  x = 6.2 g (in 1 liter, or 1000 mL)

6.2 g

1 L
=

6.2 g

1000 mL
= 0.0062 g/mL¢0.0062 g

1 mL
≤ = ¢ x

100 mL
≤  x = 0.62 g/100 mL = 0.62 g/dL = 0.62% (w/v)

 8. Calculate the factor that converts “mg/dL” to “mmol/L”:¢1 mg

dL
≤ ¢ g

1000 mg
≤ ¢ mol

40.08 g
≤ ¢1000 mmol

mol
≤ ¢10 dL

L
≤ = 0.2495 mmol/L

your supervisor is correct.

By the ratio method:¢1000 mg

1 g
≤ = ¢1 mg

x
≤  x = 0.001 g (in 1 dL)
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1 mol
≤ = ¢0.001 g

x
≤  x = 2.495 * 10-5 mol (in 1 dL)¢ 1 mol

1000 mmol
≤ = ¢2.495 * 10-5 mol

x
≤  x = 0.02495 mmol (in 1 dL, or 0.1 L)¢0.02495 mmol

1 dL
≤ = ¢0.02495 mmol

0.1 L
≤ = 0.2495 mmol/L

 9. In order to answer this question, the result of 9.2 mmol/L must be converted to “mg/dL.”¢9.2 mmol
L

≤ ¢ 1 mol
1000 mmol

≤ ¢62 g

mol
≤ ¢1000 mg

1 g
≤ ¢ L

10 dL
≤ = 57 mg/dL

Because the concentration is greater than 50 mg/dL, the patient is indeed a candidate 
for hemodialysis.

By the ratio method:¢1000 mmol
1 mol

≤ = ¢9.2 mmol
x

≤  x = 0.0092 mol (in 1 L)¢1 mol
62 g

≤ = ¢0.0092 mol
x

≤  x = 0.57 g (in 1 L)¢ 1 g

1000 mg
≤ = ¢0.57 g

x
≤  x = 570 mg (in 1 L, or in 10 dL)¢570 mg

1 L
≤ = ¢570 mg

10 dL
≤ = 57 mg/dL

 10. The answer is 2.8 mL. The target solution will contain 1 equivalent weight in every liter. 
For sulfuric acid (98.08 g/mol), an equivalent weight is half a mole, or 49.04 g. Thus, 100 
mL of the dilute acid contains

100 mL ¢ L
1000 mL

≤ ¢49.04 g

L
≤ = 4.90 g

The volume of concentrated acid that corresponds to this mass of 4.90 g is

0.97 * ¢1.84 g

mL
≤ = 1.78 g

Thus, each mL of the concentrated acid contains 1.78 g of H2sO4. The volume needed 
for dilution, then, is

4.90 g * ¢ mL
1.78 g

≤ = 2.8 mL

Chapter 6
Practice and Contextual Problems

 1. (a) 5 (b) 4 (c) 3 (1st), 10 (2nd), 30 (final) (d) 30 (e) 40 (f) 4

  (g) 10 (1st), 5 (2nd), 50 (final) (h) 1001 (i) 50 (j) 201 

  (k) 7.5 (1st), 10 (2nd), 75 (final) (l) 7.7 (m) 1.8 (n) 1.5
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 2. (a) 0.18 (b) 30 (c) 3 (d) 80 (e) 0.45 (f) 5 (g) 20 (h) 0.30 (i) 8

 3. 

Tube A Tube B Tube C

Volume of 
Serum  
(mL)

Volume 
of Diluent 

(mL)
Tube 

Dilution

Volume 
from Tube A  

(mL)

Volume 
of Diluent 

(mL)
Tube 

Dilution

Volume 
from Tube B 

(mL)

Volume of 
Diluent  

(mL)
Tube 

Dilution
Sample 
Dilution

a 0.20 1.80 1:10 0.20 1.80 1:10 0.20 1.80 1:10 1:1000

b 0.50 4.50 1:10 0.10 0.90 1:10 0.05 0.100 1:3 1:300

c 0.10 0.40 1:5 0.05 0.45 1:10 0.10 4.90 1:50 1:2500

d 0.10 4.90 1:50 0.10 4.90 1:50 0.10 0.30 1:4 1:10,000

e 0.01 0.24 1:25 0.01 0.09 1:10 0.01 0.02 1:3 1:750

f 0.02 0.98 1:50 0.02 0.78 1:40 0.02 0.04 1:3 1:6000

g 0.01 0.50 1:51 0.01 0.50 1:51 0.01 0.10 1:11 1:28,611

h 0.40 3.60 1:10 0.02 0.58 1:30 0.02 0.58 1:30 1:9000

i 0.025 0.475 1:20 0.025 0.475 1:20 0.025 0.725 1:30 1:12,000

 4. (a) Add the 10 μL to 490 μL of diluent.

 (b) Add the 20 μL to 100 μL of diluent.

 (c) Add the 15 μL to 435 μL of diluent.

 (d) In each step, dilute 50 μL with 450 μL of diluent.

 (e) In each step, dilute 10 μL with 190 μL of diluent.

 (f) In each step, dilute 1.0 mL with diluent up to 5.0 mL.

 (g) In each step, dilute 0.20 mL with 1.80 mL of diluent.

 5. (a)  Choose a convenient initial volume, say, 100 μL. The final volume, then, must be three 
times greater, or 300 μL. Therefore, mix 200 μL of diluent and 100 μL of sample. Any 
combination of volumes is acceptable if it meets the restrictions specified above and 
if the ratio of initial volume to final volume is 1:3.

 (b) Because the dilution factor is 20, the initial volume must be 50 μL or less in order to 
keep the final volume at 1.0 mL or less. Therefore, add 50 μL of patient sample to 
950 μL of diluent. Any combination of volumes is acceptable if it meets the restric-
tions specified above and if the ratio of initial volume to final volume is 1:20.

 (c) Because the dilution factor is 100, a simple dilution is impossible. with the available 
pipets, there is no initial volume that can be diluted 100-fold in one step to a final 
volume of 1.0 mL or less. Therefore, a serial dilution is necessary. For example, two 
sequential 1:10 dilutions would succeed, such as adding 50 μL of sample to 450 μL of 
diluent. A 1:20 followed by a 1:5 would achieve the same goal, first by adding 20 μL 
of sample to 380 μL of diluent and then by mixing 100 μL of the resulting dilution 
into 400 μL of diluent. Another option is a 1:25 followed by a 1:4, done by adding 
20 μL of specimen to 480 μL of diluent and then transferring 100 μL of the resulting 
dilution into 300 μL of diluent.

 (d) with a dilution factor of 201, a simple dilution is impossible. with the available pipets, 
there is no initial volume that can be diluted 201-fold in one step to a final volume of 
1.0 mL or less. Therefore, a serial dilution is necessary. For example, a 20.1-fold dilu-
tion followed by a 10-fold dilution would succeed. To do this, add 20 μL of specimen 
to 382 μL of diluent for the 20.1-fold dilution. Then, add 20 μL of the first dilution to 
180 μL of diluent, giving the 10-fold dilution. Other combinations are possible. For 
example, execute a 40.2-fold and then a 5-fold dilution by adding 20 μL of specimen 
to 784 μL of diluent and then transferring 50 μL of the first dilution into 200 μL of 
diluent.

 6. (a)  250 ng/dL. If the raw result for the second run had been 50 ng/dL, the corrected 
concentration would be 250 ng/dL. But, because the raw result is 7  50, the real 
concentration must be 7  250.
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 (b) 31 ng/dL. simply multiply the raw result by the dilution factor of 5.

 (c) 500 ng/dL. The overall dilution factor is 10 (5 * 2). If the third raw result had been 
50 ng/dL, the corrected concentration would be 500 ng/dL. But, because the result 
is 7  50, the real concentration must be 7  500.

 (d) 920 ng/dL. The sample dilution is 20-fold (5 * 4). Because the raw result of 46 ng/dL 
falls within the range of reliability, simply multiply it by the dilution factor of 20.

 7. It is too low by 25%. The technologist should have multiplied the result by 4. Thus, the 
corrected concentration is only 3/4 of the real value or 1/4 less than it should be.

 8. It is too low by 4%. The dilution is actually 26-fold.

 9. (a) 92 cells/mL. Use the serial-dilution equation,

Dsample = (Dtube)N

  where Dtube (the tube dilution) = 1:10 (1.0 mL + 9.0 mL) and N (the number of the 
tube in the sequence) equals 3. The sample dilution for tube 3 is 1/1000; divide the 
starting concentration (92,300 cells/mL) by 1000.

 (b) 1.9 * 106 cells/mL. The sample dilution in tube 4 is 1:10,000. Therefore, multiply the 
concentration in tube 4 (190 cells/mL) by 10,000.

 (c) The target concentration is 50 cells per 0.10 mL, or 500 cells/mL. This represents a 
sample dilution of about 1000-fold, which corresponds to tube 3.

 (d) The tube dilution in the series changes from 1:10 to 1:11 because 1.0 mL of specimen 
is added to 10.0 mL, giving a total volume of 11.0 mL. Therefore, the sample dilution 
(Dsample) in tube 4 is 1:14,600.

 10. solve the serial-dilution equation for N.

Dsample = (Dtube)N

1
243

= a1
3
b

N

loga 1
243

b = N loga1
3
b

5 = N

  Therefore the sample has been diluted 243-fold in the fifth tube.

 11. (a)  The raw result is “275 mg/dL,” but it represents a 1:5 dilution because the tech-
nologist diluted 200 μL of the sample with diluent to a total volume of 1000 μL. 
Therefore, he must multiply the result by 5 to give the corrected concentration for 
the patient sample: 1375 mg/dL.

 (b) The 1:2 dilution gave a raw result of 688 mg/dL, which yields a corrected result 
of 1376 mg/dL. Because this is effectively the same as the corrected result for the  
1:5 dilution (1375 mg/dL), the value of 688 may have been reliable.

 12. rearrange the dilution equation to isolate Vfinal:

VfinalCfinal = VinitialCinitial

Vfinal =
VinitialCinitial

Cfinal

  substitute the known values into the equation in order to give the target value, Vfinal:

Vfinal =
(9.8 mL)(86 mg/dL)

1500 mg/dL
= 0.56 mL

Thus, the optimal range for the final volume is 0.42–0.56 mL.
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 13. The result for the straight serum (712.0) is greater than the result for the 1:3 dilution after 
correction (9.0). The corrected result should have given a number higher than 12.

 14. There are two corrections to make on the raw concentration of 1946 nm BCe.

 1. From the total BCe, subtract the contribution of sample B in the mixture of samples 
A and B.

 2. Correct the concentration of BCe in diluted sample A for the dilution.

There are several approaches to solving these problems. Two of them follow.

APPROACh 1
Consider the fact that the total number of moles of BCe from sample A is the sum of the 
number of moles from samples A and B:

Total moles BCE in mixture = moles BCE from A + moles BCE from B

To simplify the calculation, assume the mixture of A and B to have a final volume of 
1.00 mL (1.00 * 10-3 L). Therefore, 0.20 * 10-3 L of A was diluted with 0.80 * 10-3 L of B.
The total number of nanomoles of BCe in the mixture is 1.95 (1.00 * 10-3 L * 1946 nmol/L), 
and the number of nanomoles of BCe from sample B is 0.26 (0.80 * 10-3 L * 331 nmol/L). 
substitute these values into the above equation:

1.95 nmol BCE in mixture = nmol BCE from A + 0.26 nmol BCE from B

Therefore,

1.95 nmol BCE in mixture - 0.26 nmol BCE from B = nmol BCE from A

1.69 = nmol BCE from A

what this means is that there are 1.68 nmol of BCe in 0.20 * 10-3 L, giving a concentra-
tion of 8400 nm for undiluted sample A.

APPROACh 2
envision five test tubes, each containing 0.20 mL of sample B. If the contents of all five 
of the tubes are mixed, the concentration of the mixture is still 331 nm. now, if a test 
tube containing 0.20 mL of A is substituted for one of the tubes containing B, then the 
final mixture is only 80% B; this means that the mixture’s BCe concentration coming from 
sample B is not 331 nm but 80% of 331 nm, or 265 nm. Therefore:

BCE concentration in mixture = conc. coming from A + (80% of conc. coming from B)

1946 nm = conc. coming from A + 265 nm

1946 nm - 265 nm = conc. coming from A

1681 nm = conc. coming from A

Correcting this concentration for the 1:5 dilution gives 8405 nM.

 15. (a)  Because the sample on circle 1 is straight (undiluted), its dilution is considered 1:1. 
Here is a summary of the other four serial dilutions.

Circle Starting Dilution Dilution Relative to Preceding Circle Sample Dilution

2 1:1 1:2 1:2

3 1:2 1:2 1:4

4 1:4 1:2 1:8

5 1:8 1:2 1:16
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 (b) sample is diluted 1:16 at the start of this procedure (100 μL is added to 1500 μL, 
for a total volume of 1600 μL); this 1:16 dilution is what goes onto circle 1.  
Here is a summary of all five dilutions.

 (c) sample is diluted 1:4 at the start of this procedure (e.g., 100 μL + 300 μL of normal 
saline solution). Then, use a pipet to put 75 μL of diluent onto each of circles 2–5. 
next, dispense 75 μL of the diluted sample onto circle 1 and 25 μL onto circle 2. Of 
the mixture on circle 2, transfer 25 μL to circle 3, and repeat this dilution procedure 
through the fifth circle. From the fifth circle, remove and discard 25 μL, equalizing 
the volumes on all five circles. Here is a summary of all five dilutions.

Circle Starting Dilution Dilution Relative to Preceding Circle Sample Dilution

1 — — 1:16

2 1:16 1:2 1:32

3 1:32 1:2 1:64

4 1:64 1:2 1:128

5 1:128 1:2 1:256

Circle Starting Dilution Dilution Relative to Preceding Circle Sample Dilution

1 — — 1:4

2 1:4 1:4 1:16

3 1:16 1:4 1:64

4 1:64 1:4 1:256

5 1:256 1:4 1:1024

Chapter 7
Practice Problems

 1. (a) yes (b) yes (c) no (d) yes

 2. 

0
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20
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0 1 2 3 4 5 6

(a)
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16

0 1 2 3 4 5 6

(b)



Answer Key            261

0
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6

0 1 2 3 4 5 6

(c)
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(g)
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 3. 
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(i)
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 4. (a) m =
110 nmol - 30 nmol

50 s - 10 s
= 2 nmol/s

 (b) m =
5 μmol - 21 μmol

10 s - 2 s
= -2  μmol/s

 (c) m =
30 mmol - 10 mmol

2.5 min - 0.5 min
= 10 mmol/min

 (d) m =
6.5 μg - 1.3 μg

13.0 min - 2.6 min
= 0.5 μg/min

 5. 

a

d
b

c

0

0.2

0.4

0.6

0.8

0 2 4 6 8 10 12 14 16

Conc. (mmol/L)

A
bs

.

  (a) 13.6 mmol/L (b) 3.5 mmol/L (c) 6.1 mmol/L (d) 1.9 mmol/L

 6.

d

c

b

a

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

Concentration (mmol/L)

Lu
m

in
es

ce
nc

e 
(�

 1
05  

co
un

ts
/s

ec
on

d)

  (a) 88 mmol/L (b) 51 mmol/L (c) 28 mmol/L (d) 12 mmol/L

 7. Interpolation a is the most prone to error. In the region where the horizontal line from 
the y-axis touches the curve, the two are nearly parallel. Therefore, visually locating the 
point of intersection is more questionable than it is for any of the other interpolations.

 8. (A  ) y = x (B  ) y = 5 (C  ) y = -x + 10 (D  ) x = 6 (E  ) y = 0.2x + 5

  (F ) y = -0.2x + 5 (G  ) y = 0.7x + 4 (H   ) y = -0.7x + 7 (I   ) y = 0.7x + 1

  (J    ) y = -0.7x + 9

 9. (a)  True. The graph shows that the slope of C is less than the slope of A. Therefore, if the 
equation for A is y = 2x + 5, then its slope is 2, and the slope of C must be 6  2.
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 (b) True. The graph shows that B and C have the same y-intercept. Therefore, if the 
equation for C is y = x + 10, then the y-intercept of each line is 10.

 (c) True. The graph shows that

 • line A rises about twice as fast as line C (the slope of A is about two times the slope 
of C), and

 • the y-intercept of A is about twice that of C.

 (d) False. The slope (-3) is negative, but each of the three lines moves upward.

 (e) False. The y-intercept (-7) is negative, but each of the three lines crosses the y-axis 
above “0.”

 10. (a) y = 1/x2  (b) y = 3 log x (c) y = x2 + 2 (d) y = x3/(x3 + 10) (e) y = 1/x

  (f) y = log x (g) y = ex (h) y = 2x2 + 3x + 20 (i) y = x/(x + 10)

Contextual Problems

 1. (a)  A luminescence of 700,000 rLU corresponds to a concentration of 0.61 ng/mL. 
The other two interpolations are 1,900,000 rLU S 0.020 ng/mL and 200,000 rLU S
4.6 ng/mL.

 (b) This problem necessitates reading the graph at the seven data points and replot-
ting them on arithmetic axes. A comparison of the two graphs reveals a difference 
in the reliability of interpolation at high concentrations. Consider, for example, a 
luminescence of 200,000 rLU. It is much harder to discern where the interpolation 
line touches the curve, which is nearly horizontal in this range.

Line Equation Slope y-Intercept Comment

A y = 4x + 12 4 12 Both the slope and y-intercept of line A 
are twice as large as they are for line C.

C y = 2x + 6 2  6

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

0 1 2 3 4 5 6 7 8

?

 2. (a) slope = 278; y@intercept = 41,582.

 (b) new slope = 299. new y@intercept = 44,131. The acceptability range of the exist-
ing slope is 278 { 27.8, or 250.2-305.8. The acceptability range of the existing  
y-intercept is 41,582 { 10%, or 37,424–45,740. Both the new slope and y-intercept 
fall within their acceptability ranges. Therefore, the existing standard curve is still valid.

 (c) The new line from scenario A is slightly closer to the existing standard curve. To reach 
this conclusion, there are at least two approaches.
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Chapter 8
Practice Problems

APPROACh 1
On a single graph, accurately plot the existing standard curve (from part a), along with the 
two new curves from scenarios A and B. By visual inspection, the new line from scenario 
A is closer to the existing standard curve at a concentration of 120 μmol/L and above.

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

0 20 40 60 80 100 120 140 160

Existing standard curve

Scenario A

Scenario B

APPROACh 2
Find the equations of all three lines in question (existing standard curve, scenario A, sce-
nario B). Then, for each line, calculate the value of y (counts per second) at a concentra-
tion of 120 μmol/L and above. Finally, compare the two new lines for distance from the 
existing standard curve at 120 μmol/L and above.

 
Equation

Value of y at  
x = 120 �mol/L

Difference from Existing Standard Curve  
at x = 120 �mol/L

existing standard curve y = 278x + 41,582 74,942 —

new line from scenario A y = 278x + 35,193 68,553 74,942 - 68,553 = 6389

new line from scenario B y = 340x + 41,582 82,382 82,382 - 74,942 = 7440

As the graph shows, at concentrations above 120 μmol/L, the new line from scenario B 
diverges even more from the  existing standard curve because of its greater slope. The 
new line from scenario A, however, has the same slope as the existing  standard curve; at 
all concentrations, therefore, it lies at the same distance from the existing curve.

 1. (1) mean = 150 median = 150

  (2) mean = 450 median = 150

  (3) mean = 135 median = 150

The median resists outliers, whether high or low, but the mean is strongly affected by 
them.

 2. (1) mean = 2.5 median = 2.5 mode = 2.6

  (2) mean = 108 median = 107 mode = 106

  (3) mean = 43.5 median = 44.1 mode = 44.8
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 3. (a) 5.5 { 2.0 (b)  92.2 { 4.2 (c) 0.033 { 0.007 (d) 1.00 * 106 { 4.5 * 104 

  (e) 2277 { 1177

 4. (a) mean = 5, median = 5, balanced

The beam is balanced on the mean. If the median equals the mean, then the beam is 
balanced on the median. If the median is greater than the mean, then there is more 
weight to the median’s left, causing the beam to tip leftward. If the median is less 
than the mean, then there is more weight to the median’s right, causing the beam 
to tip rightward.

 (b) mean = 6.6, median = 7, tips to left

 (c) mean = 113.8, median = 108, tips to right

 (d) mean = 0.67, median = 0.655, tips to right

 (e) mean = 1.4 * 105, median = 1.2 * 105, tips to right

 5. The number of standard deviations can be calculated by determining the ratio of the 
individual deviation to the standard deviation:

(data value - mean) , SD

 (a) 1 sD (b) 1.2 sD (c) -1 sD (d) 1.7 sD (e) 2.8 sD (f) -2.1 sD

 6. ninety-five percent. The range of 30 to 70 extends from two standard deviations below 
the mean to two  standard deviations above the mean. For a normal  distribution, 95% 
of the data lie between -2 and +2 standard deviations of the mean.

 7. Pipet A is the most accurate because its mean is closest to the nominal volume of 
200 μL. Pipet C is the most precise because its coefficient of variation is the smallest at 
0.8%.

 8. (a) y = 2.05x + 4.93, r = 0.99  (b) y = -19.67x + 45.17, r = -0.99

 (c) y = 0.03x - 0.18, r = 0.99  (d) y = 14,674x + 151, r = 0.97

 (e) y = 0.976x - 15.19, r = 1.0 (0.9996) (f) y = -34x + 404, r = -0.96

 9. To predict x, substitute the specified value of y into the regression equation found in 
problem 1 and solve for x.

 (a) 8.6 (b) 0.56 (c) 59.3 (d) 0.47 (e) 357 (f) 10.4

 10. (a) slope = 0.94,  y@intercept = 0.28 mmol/L, r2 = 0.9935.

To find the result for method Q when the result for method P is 5.5, use the regression 
equation y = 0.94x + 0.28. Therefore,

y = 0.94(5.5) + 0.28 = 5.45

Likewise, when P is 2.5, Q is 2.63.

 (b) slope = 1.05, y@intercept = -0.27 mmol/L, r2 = 0.9935.

To find the result for method P when the result for method Q is 5.5, use the regression 
equation y = 1.05x - 0.27. Therefore,

y = 1.05(5.5) - 0.27 = 5.51

Likewise, when Q is 2.5, P is 2.36.

 (c) To one decimal place, the two regression lines give the same result for the depen-
dent variable (5.5 mmol/L) when the independent variable is 5.5 mmol/L. However, 
they give different results (2.6 and 2.4 mmol/L) when the independent variable is  
2.5 mmol/L. This happens because the difference in slope has its smallest effect near 
the center of the range and its greatest effect near the ends of the range.

 11. (a)  slope = 0.028 AU per mg/dL, y@intercept = -0.0029AU, r2 = 0.9941.

The regression equation is y = 0.028x - 0.0029. To predict the concentration when 
the absorbance is 0.300, rearrange the equation to give x = (y + 0.0029) , 0.028. 
Thus, when y = 0.300, x = 10.8 mg/dL. when y = 0.547, x = 19.6 mg/dL.

 (b) slope = 35.09 mg/dL per AU, y@intercept = 0.17 mg/dL, r2 = 0.9941.
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The regression equation is y = 35.09x + 0.17. To predict the concentration when 
the absorbance is 0.300, substitute the value directly into the equation. Thus, when 
x = 0.300, y = 10.7 mg/dL. when x = 0.547, y = 19.4 mg/dL.

 (c) yes. Generally, standard curves are more suitable for interpolation when the inde-
pendent variable predicts the dependent variable. In this case, however, the results 
of the two regression equations are so close that the difference may be negligible.

 12. The assay for analyte A shows stronger agreement. Although analyte B gave the higher 
correlation, the slope of the line is such that the y value is more than 2.6 times the x 
value. By contrast, analyte A yields x and y values much closer to equality.

 13. (a)  The equation is CI = m { (t * Sm). The t value corresponds to 30 degrees of free-
dom because there are 32 data points and to a p value of 0.01 because the desired 
confidence interval should enclose 99% of the data. Thus, substitution into the equa-
tion gives CI = (-8.23) { (2.75 * 0.041), which means that the 99% confidence 
interval for the slope extends from -8.34 to -8.12.

 (b) It says that every increase of 1 μg/dL in the concentration of V causes a decrease in 
the measured concentration of M between 8.12 and 8.34 μg/dL.

 (c) The equation is CI = b { (t * sb). The t value corresponds to 30 degrees of free-
dom because there are 32 data points and to a p value of 0.10 because the desired 
confidence interval should enclose 90% of the data. Thus, substitution into the equa-
tion gives CI = 66.52 { (1.70 * 2.92), which means that the 90% confidence inter-
val for the intercept extends from 61.56 to 71.48 μg/dL.

 14. (a) and (b)
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 (c) The log-log plot is superior because it spaces the data points more evenly, thereby 
reducing uncertainty in the regression line. Moreover, it renders the linearity easier 
to see in the first test for goodness-of-fit. The regression equation is

log y = 0.910(log x) - 2.34

An absorbance of 0.844 predicts a concentration of 309 pg/mL. The y value is 0.844, 
the logarithm of which is -0.07366; this gives a value for log x of 2.49, making the x 
value 309. Likewise, an absorbance of 0.107 predicts a concentration of 32.0 pg/mL.

 15. (a) y = 0.078x - 0.060, r = 0.987

 (b) solve the regression equation for x at each specified absorbance, which is the y value.

y (absorbance) x (concentration)

0.130 2.4

0.330 5.0

0.530 7.6

 (c) 
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 (d) The regression line is arguably unsuitable as a standard curve because, as the plot 
reveals, the data points are not linear. In fact, they describe a sigmoidal curve. The 
consequence of this misfitting appears in the table in part b above, which shows that, 
at an absorbance of 0.130, the line predicts a concentration of 2.4, although the true 
concentration is 3.0. The difference, 0.6, is 20% of the true value.

At an absorbance of 0.530, the line predicts a concentration of 7.6, as opposed to 
the true value of 7.0; the difference, 0.6, is about 9% of the true concentration. At 
an absorbance of 0.330, the line predicts the true concentration. In fact, the line is 
close to the points in only three parts of the curve, that is, where the concentration 
is about 2, 5, or 8.

 16. The equation describes a straight line, in which elapsed time (t) is the independent 
variable (x) and the logarithm of cell number at time t (ct) is the dependent variable (y). 
(Alternatively, the difference [log ct - log ci] can be treated as y, but the final result is 
the same.) The slope of the line is 0.301/d. Thus, finding the slope by linear regression 
leads to the value of d.

   The regression equation is

y = 0.0166x + 1.38

   It follows that

slope =
0.301

d
= 0.0166 min-1

   Therefore, the doubling time (d) is 18.1 min. A plot of the data with the regression line 
appears below.
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sAMPLe CALCULATIOn (for comparison a):

F =
0.0793
0.0446

= 1.778

For 20 degrees of freedom in the numerator and 20 in the denominator, and p = 0.05, 
the critical value is 2.124. Because the calculated F value is smaller, the difference 
between the two variances is not statistically significant.

Critical values for the other comparisons:

(b)    3.637 (not sig.) (c) 2.978 (not sig.) (d) 1.534 (sig.) (e) 2.124 (sig.)

 17. (a) 0.997 (b) 0.071 (c) -0.541 (d) 0.914 (e) -0.980

 18. To determine significance, compare the calculated t value with the critical value, for 
n1 + n2 - 2 degrees of freedom. For (a), there are 8 degrees of freedom, and the cor-
responding critical value is 2.306. Because the calculated t statistic is less than the critical 
value, there is no significant difference between the means.

 (b) significant (c) not significant (d) not significant

 (e) significant

 19. There are 11 degrees of freedom:

d.f. = n1 + n2 - 2 = 6 + 7 - 2 = 11

At a p value of 0.05, the critical value of the t value is 2.201. Because the calculated t 
value exceeds the critical value, there is a significant difference between the means at 
this level of certainty. At a p value of 0.01, however, the calculated value is less than the 
critical value (3.106); thus, the difference between the means is not significant at this 
level of certainty.

 20. yes. A preliminary F test shows the two variances to be similar:

F =
14.78
13.34

= 1.108

At p = 0.05, with 20 degrees of freedom in the numerator and 20 in the denominator, 
the critical value is 2.124. Because the calculated F value is less, the variances are con-
sidered equal. student’s t test requires the two variances to be similar.

 21. 

50

t (min)
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c t

0 100 150
0.0
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Instrument #1 Instrument #2 Is Difference Significant?

Variance n Variance n F (yes/no)

(a) 0.0446 21 0.0793 21 1.778 no

(b) 8.094 8 10.772 11 1.331 no

(c) 46.812 11 23.004 11 2.035 no

(d) 0.3755 61 0.6122 61 1.630 yes

(e) 32.881 21 15.112 21 2.176 yes
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 22. 

expected counts are in parentheses.

The null hypothesis is that there is no difference between the observed counts and the 
expected counts.

sAMPLe CALCULATIOn (for category X): The expected frequency of category X is 
45/400, or 0.1125. Therefore, when the explanatory variable is A, the expected count for 
category X is 0.1125 * 121 or 13.6. The other expected counts are calculated similarly.

To calculate the χ2 statistic, it is helpful to set up a table.

   The number of degrees of freedom is 

d.f. = (number of rows in contingency table - 1) *

(number of columns in contingency table - 1)

d.f. = (3 - 1)(3 - 1) = 4

   At p = 0.05 and 4 degrees of freedom, the critical value of χ2 is 9.488. Because the 
calculated value of χ2 is smaller, the observed results do not differ significantly from the 
expected results. In other words, we do not reject the null hypothesis.

 23. The null hypothesis is that there is no difference between the observed counts and 
expected counts.

 (a) χ2 = 211.915, d.f. = 2. Calculated χ2  exceeds critical value (9.210) at p = 0.01. 
Thus, we reject the null hypothesis.

 (b) χ2 = 1.696, d.f. = 4. Calculated χ2 is less than critical value (7.779) even at p = 0.10. 
Thus, we do not reject the null hypothesis.

 (c) χ2 = 378.132, d.f. = 3. Calculated χ2 exceeds critical value (11.345) at p = 0.01. 
Thus, we reject the null hypothesis.

 24. To determine significance, compare the calculated t value to the critical value, for 
n1 + n2 - 2 degrees of freedom. For a, there are 100 degrees of freedom, and the 

Response Variable
TOTAL

X Y Z

Explanatory 
Variable

A
12

(13.6)

26

(31.8)

83

(75.6)

121

B
18

(16.1)

34

(37.5)

91

(89.4)

143

C
15

(15.3)

45

(35.7)

76

 (85)

136

TOTAL 45 105 250 400

Observed Expected
Observed –  
Expected (Observed - Expected)2

(Observed - Expected)2

Expected

12 13.6 -1.6 2.56 0.188

18 16.1 1.9 3.61 0.224

15 15.3 -0.3 0.09 0.006

26 31.8 -5.8 33.64 1.058

34 37.5 -3.5 12.25 0.327

45 35.7 9.3 86.49 2.423

83 75.6 7.4 54.76 0.724

91 89.4 1.6 2.56 0.029

76 85 -9 81 0.953

sUM (=  χ2) 5.931
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corresponding critical value is 2.626. Because the calculated t value is less than the 
critical value, there is no significant difference between the means.

 (b) not significant (c) significant (d) significant (e) not significant

 25. (a) True (b) True

 (c) False. There is no relationship between the size of p and the size of the difference 
between the two means. A difference of 50 between two means can be significant 
at p = 0.05, while a difference of 500 can be significant at p = 0.01.

 26. This statement is true.

 27. The statement is true. In the table of critical values, with 10 degrees of freedom, the t 
value of 2.046 falls between the p values of 0.10 and 0.05.

 28. The statement is true. In the table of critical values, with 7 degrees of freedom, the t 
value of 2.880 falls between the p values of 0.05 and 0.01.

Contextual Problems

 1. x =
a
n

i = 1
xi

n

By the equation above, the mean is 54.2 ng/dL.

standard deviation = s = Sa
n

i = 1
(xi - x)2

n - 1

By the equation above, the sample standard deviation is 7.52 ng/dL. The value of 40.4 
ng/dL lies at -13.8 ng/dL from the mean, which is the same as -1.8s:

-13.8 ng/dL

7.52 ng/dL
= -1.8

Therefore, your result of 40.4 does fall within 2s, and you may begin running patient 
samples and releasing results.

 2. (a)  no, the error is not negligible. Adding only 1.90 mL to the bottle containing the 
dehydrated material increases the resulting troponin-T concentration by a factor of 
1.05, bringing it up to 3.09 ng/mL. This value, however, lies at 5 standard deviations 
above the mean of 2.94, well outside the limits of acceptability. This error will cause 
a delay in running patient samples and releasing the results.

 (b) yes, it will be affected appreciably. The resulting concentration is 2.87 ng/mL, which 
is 2.3 standard deviations below the mean of 2.94 ng/mL. This error will cause a delay 
in running patient samples and releasing the results.

 3. (a)  If the two pipets were correctly calibrated, the curve would show an approximately 
normal distribution. In this case, however, the curve is bimodal; one peak occurs at 
100 ng/dL, corresponding to the correct volume of 50.0 μL, whereas the other peak 
occurs at about 110 ng/dL, corresponding to the incorrect volume of 55.0 μL. The 
two peaks are distinct because each pipet has its own standard deviation of 1.0 μL. 
what this means is that, for the correctly calibrated pipet, 99% of the results fall 
between about 94 and 106 ng/dL, a range extending from three standard deviations 
below the mean pipet volume to three above the mean pipet volume. Likewise, for 
the miscalibrated pipet, 99% of the results fall between about 104 and 116 ng/dL. 
(This explanation, of course, ignores other sources of error in the assay procedure.)

 (b) each peak would be narrower, and the separation between them would be deeper.

 (c) The peak at about 110 ng/dL, corresponding to the miscalibrated pipet, would have 
been shorter because of a smaller number of data points arising from it. In other 
words, the frequency of values between about 104 and 116 ng/dL would have been 
lower.
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 4. The answer is “16.” By the 68-95-99.7 rule, one standard deviation under the mean, 
which is 5760, contains 34% of the data. Therefore, a total of 32% (100% - [2 * 34%] ) 
of the data lie above and below one standard deviation, which means that 16% of the 
data lie below one standard deviation.

 5. Despite having a standard deviation between the other two, analyzer A has the smallest 
coefficient of variation, at 4.1%. Therefore, it has the greatest precision.

 6. 

The within-run precision is greater. This is so because the day-to-day data include more 
errors (that is, there are more opportunities for errors to occur from one day to the next 
and affect the results).

 7. The F test is appropriate for this problem. The variances, however, must first be calcu-
lated by squaring their respective standard deviations.

F =
32.49
22.09

= 1.471

Because n = 16 for each data set, the number of degrees of freedom is 15 for the 
numerator and for the denominator. The critical value at p = 0.05 is 2.4035. Because 
the observed F value is less than this, the observed difference between the precisions 
of methods 1 and 2 is statistically nonsignificant.

 8. A preliminary F test reveals statistical equivalence between the variances:

F =
0.08990
0.03584

= 2.508

This F value is less than the critical value (2.9782) at p = 0.05 for 10 degrees of freedom 
in the numerator and the denominator. Therefore, student’s t test is an appropriate 
choice. The calculated p value is 0.0127, which falls between 0.01 and 0.02, making the 
difference between the mean concentrations significant at a p value of 0.02.

 9. A paired t test is appropriate because each result from laboratory 1 is matched to a 
result from laboratory 2.

Mean (μg/dL) Standard Deviation (μg/dL) Coefficient of Variation (%)

Day-to-Day 20 1.6 8

Within-Run 22 0.8 4

Concentration of hemoglobin  
(g/dL)

Specimen Laboratory 1 Laboratory 2 1–2

1 14.1 14.6 -0.5

2 16.8 16.9 -0.1

3 14.9 15.8 -0.9

4 15.5 15.9 -0.4

5 13.9 14.4 -0.5

6 16.7 17.0 -0.3

7 17.0 17.6 -0.6

8 15.6 16.2 -0.6

9 16.1 16.3 -0.2

10 17.6 18.0 -0.4

MeAn -0.45 

  VArIAnCe 0.05167

The t value is -6.26:

t =
-0.45A0.05167

10

= -6.26
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At a p value of 0.01 (99% confidence level), and with 9 degrees of freedom, the calcu-
lated t value of -6.26 is more negative than the critical value of -3.250. Therefore, the 
difference between the two instruments is statistically significant.

 10. Because one variable is the technologist and the other is the cell type, both variables 
are categorical. Thus, the χ2 test is appropriate.

Count from Manual Differential
TOTAL

Neutrophils Lymphocytes Monocytes

Te
ch

no
lo

g
is

t #1 (new)
64

(61)

30

(32.3)

6

(6.7)

100

#2
60

(61)

33

(32.3)

7

(6.7)

100

#3
59

(61)

34

(32.3)

7

(6.7)

100

TOTAL 183 97 20 300

The null hypothesis is that there is no relationship between who the technologist is and 
the count from the manual differential.

sAMPLe CALCULATIOn:

For neutrophils, the expected frequency is 183/300, or 0.61. Therefore, the expected 
neutrophil count for technologist #1 is 0.61 * 100, or 61.

The χ2 statistic is 0.598.

The number of degrees of freedom is

d.f. = (number of rows - 1)(number of columns - 1) 

d.f. = (3 - 1)(3 - 1) = 4

For a p of 0.05 at 4 degrees of freedom, the critical value of χ2 is 9.488. Thus, the 
observed counts do not differ significantly from the expected counts, and we do not 
reject the null hypothesis.

 11. A paired t test is appropriate because each result from the current instrument is matched 
to a result from the new one.

Urine Osmolality (mOsm/kg)

Specimen Current Instrument New Instrument Current – New

1 446 450 -4

2 307 299 8

3 661 648 13

4 537 555 -18

5 498 494 4

6 410 431 -21

7 372 401 -29

8 526 540 -14

9 462 450 12

10 602 619 -17

MeAn -6.6

  VArIAnCe 229.38

The t value is -1.378:

t =
-6.6A229.38

10

= -1.378
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At a p value of 0.05, and with 9 degrees of freedom, the calculated t value of -1.378 is 
less negative than (is greater than) the critical value of -2.262. Therefore, the difference 
between the two instruments is statistically nonsignificant.

 12. Because one variable is categorical and the other numerical, a t test is called for. A 
preliminary F test reveals statistical nonequivalence between the variances:

F =
5.408
1.223

= 4.422

This F value is greater than the critical value (3.522) at p = 0.01 for 15 degrees of free-
dom in the numerator and in the denominator. Therefore, the t test for unequal variances 
is the appropriate choice.

The t value is 6.708. There are 21 degrees of freedom (calculated by statistics software 
in a spreadsheet program). At p = 0.01, the calculated t value of 6.708 exceeds the 
critical value of 2.831. Therefore, there is a significant difference between the means 
of the two data sets.

ChAPTER 9
Practice and Contextual Problems

 1. Beer’s law is suitable for each case.

 (a) c = 6.35 * 10-5 (b) c = 6.84 * 10-5 (c) ϵ = 660   (d) l = 0.5

(e) c = 3.41 * 10-5 (f) A = 0.400       (g) ϵ = 1676 (h) c = 2.63 * 10-4

 2. (a)  The concentration of #2 is two times that of #1 because the absorbance of #2 is two 
times that of #1. This conclusion is sound because the absorbance values of #1 and 
#2 are both in the linear range of the standard curve, where Beer’s law is valid.

Lowest concentration of linear range       1.0 * 10-5 m

Highest concentration of linear range 6.8 * 10-5 m

Concentration of #1 1.8 * 10-5 m

Concentration of #2 3.6 * 10-5 m

 (b) no. The absorbance of #3, despite being four times that of #1, is outside the linear 
range, where Beer’s law is invalid. The highest absorbance value of the linear range, 
corresponding to 6.8 * 10-5 m, is 0.903.

 3. There are at least two effective approaches to solving this problem.

APPROACh 1
Calculate the molar absorptivity and then use Beer’s law to find the concentration at 
A = 0.502.
For the known solution:

 A = ϵcl

 A , (cl) = ϵ

0.339 , (4.6 * 10-5 m)(1.0 cm) = ϵ

7370 m-1 cm-1 = ϵ

For the unknown solution:

A , (ϵl) = c

0.502 , (7370 m-1 cm-1)(1.0 cm) = c

6.8 * 10-5 m
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 4. Use problem 3 as a model. The concentration is 2.5 * 10-7 m.

 5. (a) False. Transmittance is not linear with concentration.

 (b) False. Transmittance is not linear with concentration.

 (c) True.

A = - log T

A = - log(0.52)

A = 0.284

 (d) True.

A = ϵcl

A = (855 m-1 cm-1)(1.0 cm)(0.00036 m)

A = 0.308

 (e) True.

A , (ϵl) = c

0.188 , (29,000 m-1 cm-1)(1.0 cm) = c

6.48 * 10-6 m = c

 (f) True.

A , (cl) = ϵ

0.388 , (9.2 * 10-5 m) (0.5 cm) = ϵ

8435 m -1 cm-1 = ϵ

 (g) True.

A = - log T

A = - log(0.39)

A = 0.409

 (h) True. Transmittance and absorbance move in opposite directions.

 (i) False. Absorbance is directly proportional to path length.

APPROACh 2
set up a proportion equation and then solve for the unknown quantity:

A1

A2
=

c1

c2

we know three of the four values in this case:

0.339
0.502

=
4.6 * 10-5 

c2

c2 =
(4.6 * 10-5   )(0.502)

0.339

c2 = 6.8 * 10-5 m

m

m
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 6. (a) 
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 (b) The molar absorptivity is the slope of the line, which is described by Beer’s law. note 
that the path length has gone into the x value.

A = ϵ * c * l

y = m x + b

m =
1.230 - 0.041

300 * 10-6 mol # cm/L - 10 * 10-6 mol # cm/L

= 4100 L # mol-1 # cm-1

 (c) There are three approaches to this question.

APPROACh 1
Visual interpolation. An absorbance of 1.080 corresponds to a concentration of 
260 μmol/L.

APPROACh 2
equation of ratios, as in problem 3.

A1

A2
=

c1

c2

0.821
1.080

=
200 μmol/L

c2

c2 = 263 μmol/L

APPROACh 3
Beer’s law.

A = ϵ c l

c =
A

ϵ * l
=

1.080
(4100 L # mol-1 # cm-1)(1 cm)

c = 0.000263 mol/L = 263 μmol/L
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 (d) no. Beer’s law is valid only in the linear range of the graph. For this particular sub-
stance, the graph ceases to be linear above a concentration of 300 μmol/L, where A 
is 1.230.

 (e) An absorbance value of 1.647 is off the standard curve. Diluting the solution by a factor 
of 2 or 3 would bring the absorbance value into the linear range. The corresponding 
concentration from the standard curve would then be corrected for the dilution.

 (f) The final solution represents a 1:3 dilution. An absorbance of 0.757 corresponds to 
a concentration of 1.85 * 10-4 mol/L. Thus, we must multiply this concentration by 
3 to give the original concentration, which is 5.54 * 10-4 mol/L.

 7. 
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y@intercept =
1

Vmax
= 0.0045 s # L # nmol-1   x@intercept =

-1
KM

= -0.016 L/μmol

Vmax = 222 nmol/L/s             KM = 63 μmol/L

 8. The procedures are the same as those for problem 7 above. The constants are

y@intercept =
1

Vmax
= 1.72 s # L # nmol-1   x@intercept =

-1
KM

= -0.059 L/μmol

Vmax = 0.58 nmol/L/s               KM = 17 μmol/L

 9. (a)  enzyme #2 is more suitable. The KM should be higher than the concentration of the 
substrate so that differences in concentration between specimens cause measurable 
differences in reaction rate. If you used enzyme #1, the substrate would be present 
at 5 to 25 times the KM, which is in the plateau region of the curve where reaction 
rate changes little with substrate concentration.

 (b) The concentration of substrate should be saturating, far above the KM of 9 mM, so that 
the reaction rate depends only on the concentration of enzyme in the serum specimen.

 10. The answer is 528 IU/L. The first step is to ascertain whether the reaction rate is 
constant. After the first 20 seconds, the difference from one time point to the next 
represents a rate of 0.081 per 20 s, or 0.243 per min.

Incubation time (s) A405 �A405/20 s

20 0.033

40 0.114 0.081

60 0.195 0.081

80 0.276 0.081

100 0.357 0.081

120 0.438 0.081
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every minute, the absorbance increases by 0.243. Thus, the second step is to convert 
this absorbance to a concentration. Beer’s law accomplishes this:

A = ϵ c l

c =
A
ϵl

c =
0.243/min

(18,450 L # mol-1 # cm-1)(1 cm)

= 1.32 * 10-5 mol/L/min

The concentration increases by 1.32 * 10-5 mol/L every minute, or 13.2 μmol/L/min:

1.32 * 10-5 mol/L
min

*
106 μmol

mol
= 13.2 μmol/L/min

This enzyme activity came from a specimen that had been diluted 40 times 
(0.025 mL S 1.0 mL). Therefore,

13.2 μmol/L/min * 40 = 528 μmol/L/min = 528 IU/L

 11. (a) 

 (b) The initial rate is the slope of the line at each starting substrate concentration in the 
above graph (before it enters a plateau). For example, the slope of the line at [s]3 is

m =
216 μmol/L - 18 μmol/L

120 s - 10 s
= 1.8 μmol/L/s

The slopes of the other lines are 0.50 at [s]1, 0.98 at [s]2, 3.8 at [s]4, and 8.0 at [s]5.
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 (d) By inspection of the curve in part b, it is nearly impossible to accurately evaluate 
Vmax and, therefore, KM. If we estimate Vmax to be between 8 and 9 μmol/L/s, our 
value proves to be only about 60% of that from a Lineweaver-Burk plot (see below). 
A reliable curve-fitting computer program would return a better result, especially if 
we had gathered more data points.

On the Lineweaver-Burk plot, we directly read the values of Vmax and KM. neverthe-
less, wisdom reminds us that these values are probably less accurate than those we 
would have obtained from a curve-fitting program on the original data.

y@intercept =
1

Vmax
= 0.075 s # L # μmol-1  x@intercept =

-1
KM

= -0.039 L/μmol

Vmax = 13.3 μmol/L/s            KM = 26 μmol/L

 12. The strongest acid has the highest Ka (lowest pKa), and the weakest acid has the lowest 
Ka (highest pKa).

 (c) The reciprocals of [s] and v are

1/[S] (L/�mol) 1/v (s # L # �mol-1)

1 2

0.5 1.02

0.25 0.56

0.1 0.26

0.025 0.125

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

–0.1 0.1 0.3 0.5 0.7 0.9

1/
v 

(s
·L

·µ
m

ol
–1

)

1/[S] (L/µmol)

Acid pKa

salicylic (strongest) 2.98

lactic 3.08

formic 3.75

valproic 4.60

acetic (weakest) 4.76

 13. Use the Henderson-Hasselbalch equation to find the ratio of the concentration of con-
jugate base, [HPO4

 -], to the concentration of acid, [H2PO4
 2-]:

pH = pKa + log 
[A-]
[HA]

10pH-pKa =
[A-]
[HA]
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107.0-7.2 =
[HPO4

 2-]
[H2PO4

 -]

0.631 =
[HPO4

 2-]
[H2PO4

 -]

0.631[H2PO4
 2-] = [HPO4

 -]

The total concentration of the buffer is 0.10 m:

[H2PO4
 2-] + [HPO4

 -] = 0.10 m

Therefore,

[H2PO4
 2-] + 0.631[H2PO4

 2-] = 0.10 m

1.631[H2PO4
 2-] = 0.10 m

[H2PO4
 2-] = 0.0613 m

and

[HPO4
 -] = 0.10 m - 0.0613 m

[HPO4
 -] = 0.0387 m

now, convert the concentrations into masses. The required mass of KH2PO4 is 8.34 grams:

1.0 La0.0613 mol
L

b a136.09 g

mol
b = 8.34 g

The required mass of K2HPO4 is 6.74 grams:

1.0 La0.0387 mol
L

b a174.18 g

mol
b = 6.74 g

 14. Use problem 13 as a model for solving this one.

  required masses:

KH2PO4 = 1.31 g

K2HPO4 = 2.67 g

 15. Use problem 13 as a model for solving this one.

  required masses:

KH2PO4 = 1.02 g

K2HPO4 = 1.31 g

 16. First, use the Henderson-Hasselbalch equation to calculate the concentrations of the 
acid and its conjugate base (as in problem 13):

acetic acid = 0.129 m

sodium acetate = 0.0709 m

  next, calculate (a) the volume of acetic acid and (b) the mass of sodium acetate required 
for a final buffer volume of 1.0 L:

volume of acetic acid  1.0 L¢0.129 mol
L

≤ ¢60.05 g

mol
≤ ¢  mL

1.049 g
≤ = 7.38 mL

mass of sodium acetate  1.0 L¢0.0709 mol
L

≤ ¢82.03 g

mol
≤ = 5.82 g
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 17. For the blood-buffering system, the Henderson-Hasselbalch equation is

pH = pKa + log 
[HCO3

 -]
α * PCO2

  which can be rearranged to

(10pH-pKa)(α * PCO2) = [HCO3
 -]

  For specimen #1, the equation is

(107.40-6.10)(0.0301 mmol/L/mm Hg * 40 mm Hg) =  [HCO3
 -]

 24.0 mmol/L = [HCO3
 -]

Specimen [HCO3
 -] (mmol/L)

1 24.0
2 23.5
3 23.7
4 20.8

 18. pH = 7.38

 19. pH = 3.57

 20. Patient 1.

  The patient is alkalotic. The cause cannot be respiratory because a high PCO2 causes 
acidosis. Therefore, the cause is the high bicarbonate, making the condition metabolic. 
Compensation is present in the high PCO2.

  Patient 2.

  The patient is acidotic. The high PCO2 implies a respiratory cause. Compensation is 
absent in that the bicarbonate concentration is normal.

  Patient 3.

  The patient is acidotic. The low PCO2 and bicarbonate concentration are consistent with 
a metabolic cause. Compensation is present in the low PCO2.

 21. 

Patient Anion Gap (with K + ) Anion Gap (without K + )

1 17 12
2 11 6
3 33 28

 22. (a) 0.2 Osm/L

 (b) 0.03 Osm/L  (10 mm CaCl2 = 0.01 m CaCl2 = 0.03 moles of particles per L)

 (c) 0.10 Osm/L

 (d) 0.25 Osm/L

 23. (a) Use equations 6 and 7

Specimen Osmolarity Osmolality

1 294 295
2 285 286
3 315 317
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 (b) subtract the calculated osmolality from the measured osmolality:

 24. 

Specimen Osmolality Gap

1 304 - 295 = 9
2 13
3 -7

Specimen [LDL] (mg/dL)

1 112
2  90
3 213

 25. Convert to “centimeters” and “kilograms.” Then use equations 11 and 12.

ChAPTER 10
Practice and Contextual Problems

 1. There would be 993 wBCs. The space in question has a volume of 0.15 mm3. Therefore,

1 mm3

0.15 mm3 =
6620 WBCs

x

x = 993 WBCs

 2. Using equation 1 gives

RBC count =
200 RBCs

0.02 mm3 * 200 = 2,000,000 RBCs/mm3

Because the procedure was standard (all 5 “r” squares, 1:200 dilution), one can use the 
single factor (Table 10-1):

RBC count = 200 * 10,000 = 2,000,000 RBCs/mm3

 3. Using equation 1 gives

WBC count =
57 WBCs

0.4 mm3 * 20 = 2850 WBCs/mm3

Because the procedure was standard (all four corner squares, 1:20 dilution), one can use 
the single factor (Table 10-1):

WBC count = 57 * 50 = 2850 WBCs/mm3

 4. A 40-fold dilution. The volume of a w-labeled square is 0.1 mm3. Therefore, the cells 
would be present in the square at 50 per 0.1 mm3, or 500 per mm3. This concentration 
of cells is 40 times less than that of the whole blood (20,000 per mm3).

Patient
H

(cm)
W

(kg)
A

(m2)

24-hour 
Urine 

Volume 
(mL) Vurine

Pcreatinine
(mg/dL)

Ucreatinine
(mg/dL)

Corrected 
Clearance

Rate
(mL/min)

1 149.9 69.75 1.65 1600 1.11 1.2 140 136
2 188.0 94.5 2.21 1830 1.27 1.9 128  67
3 177.8 82.35 2.00 1360 0.94 1.5 162  88
4 167.6 58.95 1.67 1780 1.24 1.4 155 142
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 5. Using equation 1 gives

RBC count =
166 RBCs

0.02 mm3 * 100 = 830,000 RBCs/mm3

Because the dilution was not standard (1:200), one cannot use the single factor.

 6. Using equation 1 gives

WBC count =
36 WBCs

0.4 mm3 * 10 = 900 WBCs/mm3

Because the dilution was not standard (1:50), one cannot use the single factor.

 7. Using equation 2 gives

MCV =
38
4.7

* 10 = 81 fL

 8. Using equation 2 gives

MCV =
44
5.1

* 10 = 86 fL

 9. The rBC count of 6.0 * 1012/L is equivalent to 6.0 * 106/mm3. Using equation 2, there-
fore, gives

MCV =
47
6.0

* 10 = 78 fL

 10. Using equation 3 gives

 MCH =
15.2
5.4

* 10 = 28 pg

 11. Using equation 4 gives

MCHC =
13.9
41

* 100 = 34 g/dL

 12. A factor of 1000 replaces the factor of 10. Thus, equation 2 becomes

MCV (fL) =
Hct (L/L)

RBC count (*106/μL)
* 1000

For example, an Hct of 45% becomes 0.45 L/L, which is the same as 0.45 μL/μL. sub-
stituting 0.45 μL/μL for an Hct of 45 divides the numerator by 100. To compensate for 
this, the factor of 10 in equation 2 must be multiplied by 100, giving 1000.

 13. Use equation 10 to calculate the Inr:

PTnorm PTpatient ISI INR

12 21 1.22 2.0

12 16 1.91 1.7

12 21 2.0 3.1

12 24 1.5 2.8

11 19 1.35 2.1

11 30 1.1 3.0

11 23 2.2 5.1

11 10 1.0 0.9
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 14. Using equation 1 gives

platelet count =
91 platelets

0.1 mm3 * 100 = 91,000 platelets/mm3

Because the procedure was standard (all 25 squares in center, 1:100 dilution), we can 
use the single factor (Table 10-1):

platelet count = 91 * 1000 = 91,000 platelets/mm3

 15. Using equation 1 gives

platelet count =
137 platelets

0.1 mm3 * 100

= 137,000 platelets/mm3

Because the procedure was standard (all 25 squares in center, 1:100 dilution), we can 
use the single factor (Table 10-1):

platelet count = 137 * 1000 = 137,000 platelets/mm3

 16. Using equation 1 gives

platelet count =
208 platelets

0.1 mm3 * 100

= 208,000 platelets/mm3

Because the procedure was standard (all 25 squares in center, 1:100 dilution), we can 
use the single factor (Table 10-1):

platelet count = 208 * 1000 = 208,000 platelets/mm3

 17. Use equation 8 to calculate the percentage.

 18. Use equation 9 to calculate the percentage.

Reticulocytes per 1000 RBCs Reticulocyte Percentage

37 3.7

106 10.6

9 0.9

233 23.3

13 1.3

 19. Use equation 5 to calculate the corrected count.

Reticulocytes in Both Squares RBCs in Smaller Square Reticulocyte Percentage

40 260 1.7

18 194 1.0

105 168 6.9

17 233 0.8

129 173 8.3

Reticulocyte Count (%) hematocrit (%) Reticulocyte Index (%)

3.3 31 2.3

10.0 28 6.2

2.6 19 1.1

8.3 21 3.9

1.1 35 0.9
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 20. Use equation 7 and Table 10-2 to calculate the rPI:

 21. Use the two equations for the rule of Three:

3 * [Hb] = Hct { 3

3 * RBC count = [Hb]

All except data set c satisfy the rule. The Hct for c should fall between 31.2 and 37.2.

 22. The patient specimen is consistent with the presence of spherocytes. The normal speci-
men begins lysing at 0.50% and has lysed completely by 0.30%, whereas the patient 
specimen begins at 0.60%. The patient’s curve is right-shifted relative to the normal 
curve.

Reticulocyte Index (%) hematocrit (%) Reticulocyte Production Index (%)

1.7 32 1.1

9.0 27 6.0

2.0 25 2.0

0.9 30 0.6

7.8 14 3.1

 23. Use equation 11 to correct the wBC count.

0
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nt
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Normal
Patient

Uncorrected WBC  
Count (cells/�L) nRBCs per 100 WBCs

Corrected WBC  
Count  (cells/�L)

(a) 18,500 14 16,200

(b) 5600 28 4400

(c) 2200 47 1500

 24. Use equation 1 to calculate the final counts. Alternatively, use the single factors 
(Table 10-1) because the procedure was standard.

Raw Count Final Count

RBCs
(total in 5 squares 

on one side)

WBCs
(total in 4 corner 

squares on one side)

Platelets
(total in all 25 

squares on one side)
RBCs

(cells/mm3)
WBCs

(cells/mm3)
Platelets

(cells/mm3)

(a) 193 72 136 1,930,000 3600 136,000

(b) 467 112 200 4,670,000 5600 200,000

(c) 250 400 61 2,500,000 20,000 61,000

(d) 590 231 277 5,900,000 11,600 277,000

 25. Use equation 1 to calculate the final counts. Consider the dilutions to have been 
nonstandard.
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ChAPTER 11 
Practice and Contextual Problems

 1. Day 5: r4s (random error) Day 12: 22s (systematic error)

Day 20: 41s (systematic error)

 2. Day 12: 10x‾
 (systematic error) Day 20: 13s (random error)

 3. Control 1:    mean = 180  sD = 5.1
Control 2:    mean = 256  sD = 9.8

Westgard Violations

Day 4: 41s Day 7: 12s Days 13 & 14: 22s (control 2)
Day 14: 22s (controls 1 & 2) Day 20: 10x‾

Raw Count Final Count

RBCs
(total in 5 squares 

on one side)

WBCs
(total in 4 corner 

squares on  
one side)

Platelets
(total in all 25 squares 

on one side)
RBCs

(cells/mm3)
WBCs

(cells/mm3)
Platelets

(cells/mm3)

(a) 550 (dil. = 1:300) 200 (dil. = 1:30) 80 (dil. = 1:50) 8,250,000 15,000 40,000
(b) 360 (dil. = 1:100) 310 (dil. = 1:40) 95 (dil. = 1:50) 1,800,000 31,000 47,500
(c) 242 (dil. = 1:50) 95 (dil. = 1:10) 427 (dil. = 1:200) 605,000 2400 854,000
(d) 498 (dil. = 1:400) 400 (dil. = 1:30) 341 (dil. = 1:200) 9,960,000 30,000 682,000
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 4. 

 5. (a)  The value of 45 is an outlier because it falls outside the range of {2s, which runs 
from 35.8 up to 44.2. It is only a warning from the 12s rule—not a violation leading to 
rejection.

 (b) There is an upward trend starting with the fourth new result (48). The final value of 
57 is greater than 3s above the mean (56 meq/L). Therefore, the run is rejected.

 (c) There is a downward shift starting with the second new result (4.9). The final value of 
4.3 is less than 4.4%, which is 2s below the mean. Therefore, the run is rejected.

 6. (a)  A violation of rule 22s means that both the current and preceding results exceed 2, 
but not 3, standard deviations above the mean. Therefore, the preceding result can 
be no less than 136 μg/mL and no greater than 139 μg/mL.

 (b) A violation of rule 41s means that the current result of 134 is the last in a series of 
four results that are more than 1 sD above the mean. Therefore, each of the three 
preceding results can be no less than 133 μg/mL.

 (c) A violation of rule 10x‾ means that the current result of 128 is the last in a series of 10 
results that lie on the same side of the mean. The 19th result in the entire sequence 
is the last one before the series of 10. Therefore, it can be no less than the mean, 
which is 130 μg/mL.

 7. The run must be rejected for violating rule 22s across the two controls.

 8. The run must be rejected because control 1 violates rule 41s and control 2 violates rule 13s.

 9. The run may be accepted because there are no westgard violations.

ChAPTER 12 
Practice and Contextual Problems

 1. (a)  The prevalence is the number of persons with a condition expressed as a percentage 
of the total population tested. In this case, 10 of the 25 patients had bacteremia. 
Thus, the prevalence is 10 , 25, or 40%.

 (b) If the cutoff is 10 * 103 cells/mm3, then all the patients with bacteremia would test 
positive for bacteremia by the leukocyte count. Thus, the sensitivity is 100%:

sensitivity =
TP

TP + FN
* 100% =

10
10 + 0

* 100% = 100%

Na (mm) K (mm) Glucose (mg/dL)

Mean 149 6.6 100

SD 1.5 0.17 2.8

Question #1 yes no (41s) yes

Question #2 yes yes no (13s)

Na GlucoseK
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The specificity, however, is only 73% because 4 of the 15 patients without bacteremia 
would test falsely positive:

specificity =
TN

TN + FP
* 100% =

11
11 + 4

* 100% = 73%

 (c) raising the cutoff to 15 would lower the sensitivity but increase the specificity:

sensitivity =
TP

TP + FN
* 100% =

6
6 + 4

* 100% = 60%

specificity =
TN

TN + FP
* 100% =

15
15 + 0

* 100% = 100%

 (d) equation 5 gives a positive predictive value of 71%:

PPV =
(sensitivity)(prevalence)

(sensitivity)(prevalence) + (1 - specificity)(1 - prevalence)
* 100%

PPV =
(1)(0.40)

(1)(0.40) + (1 - 0.73)(1 - 0.40)
* 100% = 71%

 2. The answer to this question is the positive predictive value, which represents the like-
lihood that a positive test result is correct. There are at least two efficient ways to 
approach this problem.

APPROACh 1
Use equation 7. The prevalence is 1 out of 85,000, which equals 0.000012, or 0.0012%:

PPV =
(0.99)(0.000012)

(0.99)(0.000012) + (1 - 0.99)(1 - 0.000012)
* 100% = 0.12%

Thus, the probability that the man’s positive test result is correct is only 0.12%, or 12 out 
of 10,000.

APPROACh 2
reason through the problem step by step without using equation 7. Out of every 85,000 
people in the population, HIV is present in 1 and absent from the other 84,999. This 
means that HIV is present in 10 out of 850,000 and 100 out of 8,500,000. Because the 
sensitivity of the test is 99%, then, in a population of 8.5 million, 99 of the people with 
HIV will test positive, and 1 will test negative. Moreover, because the specificity is 99%, 
then the 8,499,900 people who do not have HIV will give 8,414,901 negative results and 
84,999 positive. Using equation 5 gives the positive predictive value:

PPV =
TP

TP + FP
* 100% =

99
99 + 84,999

* 100% = 0.12%

 3. (a)  There are 514 subjects in the study (the sum of all the positives and negatives). By 
the new test, therefore, the prevalence is

prevalence =
TP + FN

TP + FP + TN + FN
* 100% =

208 + 16
514

= 44%

 (b) The sensitivity of the new test is

sensitivity =
TP

TP + FN
* 100% =

208
208 + 16

* 100% = 93%
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The specificity is

specificity =
TN

TN + FP
* 100% =

280
280 + 10

* 100% = 97%

 (c) The positive predictive value of the new test is

PPV =
TP

TP + FP
* 100% =

208
208 + 10

* 100% = 95%

The negative predictive value is

NPV =
TN

TN + FN
* 100% =

280
280 + 16

* 100% = 95%

 4. (a) Using equation 7, the PPV for the population of blood donors is 75%:

PPV =
(sensitivity)(prevalence)

(sensitivity)(prevalence) + (1 - specificity)(1 - prevalence)
* 100%

=
(0.999)(0.003)

(0.999)(0.003) + (1 - 0.999)(1 - 0.003)
* 100% = 75%

Using equation 7, the PPV for the population in the substance-abuse clinic is 99%:

PPV =
(0.999)(0.16)

(0.999)(0.16) + (1 - 0.999)(1 - 0.16)
* 100% = 99%

 (b) Because the prevalence of HIV among the substance-abuse patients is 16% and there 
are 200 people in that population, 32 individuals are expected to have HIV:

0.16 * 200 = 32

 (c) The PPV from part a is 75%. Therefore, the number of correct positive results is

0.75 * 1132 = 849

and the number of false positives is

1132 - 849 = 283

 5. (a) The sensitivity and specificity of test X are

sensitivity =
TP

TP + FN
* 100% =

51
51 + 0

* 100% = 100%

specificity =
TN

TN + FP
* 100% =

317
317 + 66

* 100% = 83%

The sensitivity and specificity, respectively, of test Y are 72% and 99%.

 (b) Test Y is more specific than test X. Therefore, when the result is positive, test Y is 
superior for ruling in salmonellosis.

 6. (a)  If specificity is the probability of a negative result in the absence of the condition, 
then its value in this case is 83% simply because a number of 2 or greater will come 
up 83 times out of every 100 with a healthy person standing nearby. (Of course, it 
will also come up 83 times out of every 100 with a sick person standing nearby.)

 (b) A high value does not guarantee clinically meaningful information.

 7. (a) 1 = Tn  2 = Fn  3 = FP  4 = TP

 (b) The sensitivity decreases because the fraction of true positives goes down and the 
fraction of false negatives goes up.
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 (c) Moving the cutoff to three standard deviations above the pink mean amounts to an 
upward shift. The specificity increases because the fraction of true negatives goes 
up and the fraction of false positives goes down.

 (d) Moving the cutoff to three standard deviations below the blue mean amounts to a 
downward shift. The sensitivity increases because the fraction of true positives goes 
up and the fraction of false negatives goes down.

 8. (a)  There are no false positives. Thus, this test is suitable for a condition in which false 
positives are unacceptable, such as a serious untreatable disease.

 (b) In a serious treatable disease, the number of false negatives must be minimal. Thus, 
the cutoff should be moved toward the low end of the blue curve.

 9. (a)  The negative predictive value is the probability that a patient with a negative test 
result does not have cancer:

negative predictive value (NPV) =
TN

TN + FN
* 100% =

399
399 + 59

= 87%

 (b) The positive predictive value is the probability that a patient with a positive test result 
does have cancer:

positive predictive value (PPV) =
TP

TP + FP
* 100% =

187
187 + 514

= 27%

 (c) The efficiency is the probability that a given test result matches the diagnosis:

efficiency =
TP + TN

TP + FP + TN + FN
* 100% =

187 + 399
187 + 514 + 399 + 59

= 51%

 10. (LO 4) solve Practice Problem 10 (a, b) in Chapter 8.

 11. (LO 7) solve Practice Problem 21 in Chapter 8.

 12. (LO 7) solve Contextual Problem 7 in Chapter 8.

 13. 10.

Conc. of Chloride 
(mEq/L)

Specimen
Spiked 
Aliquot

Baseline 
Aliquot

Conc.
Recovered (Eq. 9)

% Recovery
(Eq. 10)

 1 107 101 6 100

 2 106  99 7 117

 3 110 105 5  83

 4 106 100 6 100

 5 102  96 6 100

 6 110 104 6 100

 7 106 101 5  83

 8 114 108 6 100

 9 105 100 5  83

10 109 104 5  83

11 103 101 2  33

12 105  98 7 117

13 113 106 7 117

14 117 110 7 117

15 105  99 6 100

16 110 103 7 117

17 106 100 6 100

18 115 111 4  67

19 115 108 7 117

20 107 102 5  83
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  The average percent recovery is 96, which falls within the range of acceptability.

 14. 

  The calculated t value is -0.830, and there are 33 degrees of freedom. For p = 0.05, the 
critical value lies between -2.06 (25 d.f.) and -2.01 (50 d.f.). Therefore, we cannot con-
clude that the two methods differ significantly.

 15. 

  The result occupying the 2.5% position is

2.5% * 162 = 4

  which corresponds to a value of “0.26.” The result occupying the 97.5% position is

97.5% * 162 = 158

  which corresponds to a value of “1.39.” Therefore, the reportable range is “0.26–1.39.”

A1C Conc. (%)
A1C Conc. (%)  

(continued)

Method A Method B A–B Method A Method B
A–B

(continued)

6.2 6.1 0.1 9.0 8.6 0.4

3.9 4.5 -0.6 4.6 5.0 -0.4

9.8 8.9 0.9 6.0 6.2 -0.2

5.0 5.1 -0.1 5.4 5.2 0.2

4.7 5.2 -0.5 4.7 5.0 -0.3

4.8 4.7 0.1 5.2 5.2 0

5.9 6.1 -0.2 6.6 6.9 -0.3

4.0 4.4 -0.4 7.9 7.8 0.1

13.2 13.8 -0.6 4.9 4.2 0.7

7.1 6.9 0.2 4.2 4.3 -0.1

4.5 4.2 0.3 12.2 13.0 -0.8

5.2 5.0 0.2 6.0 5.9 0.1

6.1 6.5 -0.4 5.1 5.1 0

4.9 5.0 -0.1 7.6 7.4 0.2

4.8 5.0 -0.2 4.6 4.4 0.2

10.7 10.3 0.4 4.8 5.0 -0.2

8.3 8.8 -0.5 5.0 5.0 0

MeAn (D) = -0.0529

VArIAnCe (s2) = 0.138

n = 34

t value = -0.830

(equation 14 in Chapter 8, paired samples) 

t =
DB s2

n
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Abscissa—the x coordinate of a point on a Cartesian graph.
Absolute uncertainty—the raw amount of uncertainty in a 
measurement.
Absorbance—the negative logarithm of transmittance. It is a mea-
sure of how much light a chemical substance absorbs (under defined 
conditions).
Accuracy—the degree to which a measurement or calculated result 
corresponds to its true value.
Acid dissociation constant (Ka)—a constant whose value cap-
tures the extent of dissociation of an acid under defined conditions.
Acidosis—the condition in which too much acid is present.
Alkalosis—the condition in which too much base (too little acid) 
is present.

Anion gap—the difference between the concentrations of the 
unquantified anions and the unquantified cations in the plasma. It 
represents the approximate concentration of unquantified anions 
that are not balanced by unquantified cations.

Antibody titer—the amount of antibody present in serum against 
a certain antigen, defined as the reciprocal of the highest sample dilu-
tion ratio at which antibody is detectable.

Antilogarithm—the inverse function of the logarithm; 
antilogb (logb a) = a.

Aqueous—of or pertaining to water; being based on, or dissolved 
in, water.

Arithmetic mean—the sum of all the data values divided by the 
number of those values. It is the balance point of the data set, and 
the unique value that can replace every observed value in the data set 
without altering the total of those values.

Arithmetic scale—a scale on a graph on which each unit increase 
represents a linear increase in the number.
Associative property—in the context of addition and multiplica-
tion, the law that says that changing the grouping of numbers in an 
operation does not change the result: (a + b) + c = a + (b + c) 
and (a * b) * c = a * (b * c).
Avogadro’s number—the number of elementary particles in one 
mole of a substance: 6.022 * 1023) (some resources: 6.023 * 1023).
Base—in an exponential expression, the number being multiplied by 
itself the number of times specified by the exponent.
Beer-Lambert law—the linear relationship among absorbance 
(A), molar absorptivity (P), concentration (c), and path length (l): 
A = P c l.

Bias—constant error in a series of observations or calculations. In a 
method comparison, it is the difference between the average result 
from the new method and the average result from the reference 
method.
Buffered—resistant to changes in pH when acid or base enters the 
system in small amounts.
Calibrator—a solution of an analyte whose concentration has been 
determined to high accuracy, and is intended for use in the calibration 
of an analytical method.
Canceling—a way of reducing fractions by either dividing or mul-
tiplying both the numerator and denominator by the same number.
Cartesian coordinate system—a system for representing num-
bers as points on a graph and equations as geometric shapes. The name 
honors René Descartes (1596–1650), its developer.
Categorical variable—a variable that is not numerical.
Celsius scale—the temperature scale on which the freezing point 
of water is 0° and the boiling point is 100°.
Central tendency—the center of a data set; a typical value.
Characteristic—the part of a logarithm to the left of the decimal 
point.
Chromophore—a chemical substance that absorbs light.
Coefficient of determination (r2 or R2)—in regression, a 
number between 0 and 1, inclusive, that represents the proportion of 
the total variation in y that is explained by the variation in x.
Coefficient of variation—the standard deviation expressed as a 
percentage of the mean.
Common logarithm—logarithm with a base of 10.
Commutative property—in the context of addition or multi-
plication, the law that says that changing the order of numbers in an 
operation does not change the result: a + b + c = c + a + b and 
a * b * c = c * a * b.
Complex fraction—a fraction in which the numerator and/or the 
denominator is itself a fraction.
Concentration—an expression of the relative amounts of solute 
and solvent present in a solution.
Confidence interval—a range that contains the true value of some 
parameter a large proportion of the time.
Conjugate acid—the corresponding acid formed when a base 
accepts a hydrogen ion.
Conjugate base—the corresponding base formed when an acid 
loses a hydrogen ion.
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End-point assay—an assay in which the signal (e.g., absorbance) 
is measured at a fixed time point and the rate is calculated from a 
standard curve, a single standard, or a proportionality constant (e.g., 
molar absorptivity).
Enzyme—biological macromolecules that catalyze chemical reac-
tions in living systems.
Enzyme kinetics—the quantitative study of catalysis by enzymes.
Equivalent—one hydrogen ion in the formula of a chemical  
substance; one mole of positive or negative charges.
Equivalent weight—the amount of a substance that contains,  
theoretically combines with, or theoretically replaces 1 mole of  
hydrogen ions.
Exponent—in an exponential expression, the raised value  
specifying the number of times that the base is to be multiplied by 
itself.
Exponential notation—a system of writing numbers, particularly 
very large and very small numbers, in exponential form.
Exponential term—in the standard format of exponential  
notation, the factor containing the exponent.
Extrapolation—the act of predicting the value of one variable from 
the value of another outside the range of a standard curve.
Factor—in the context of multiplication, any number that is multi-
plying another number.
Fahrenheit scale—the temperature scale on which the freezing 
point of water is 32° and the boiling point is 212°.

False negative—a wrongly negative result for a patient who has 
the condition in question.

False positive—a wrongly positive result for a patient who does 
not have the condition in question.

Formula weight—the sum of all the atomic weights in the formula 
of a substance.

Friedewald equation—an equation for calculating the concen-
tration of LDL cholesterol from total cholesterol, HDL cholesterol, 
and triglycerides. It is not reliable when the triglyceride concentration 
exceeds 400 mg/dL.

Glomerular filtration rate—the rate at which the kidneys are 
filtering blood through the glomeruli.

Graph—a visual summary of data depicting the relationship between 
variables.
Hemacytometer—a small device for manually counting blood 
cells under a microscope. It comprises two identical ruled glass plat-
forms separated by an H-shaped moat.
Hematocrit—the volume of whole blood occupied by packed 
RBCs.
Henderson-Hasselbalch equation—an equation that relates 
pH, pKa, and the concentrations of conjugate acid and base. It is use-
ful for preparing solutions at selected pH values.
Hypertonic—having a higher solute concentration than that of a 
given solution.

Constant systematic error—systematic error that is the same 
regardless of the analyte’s concentration.
Contingency table—a table, in matrix format, that shows the fre-
quency distribution of categorical variables.
Control—material used to generate quality control data. It chemi-
cally and physically simulates patient specimens that are typically run 
in the test under consideration.
Correlation—a mutual relationship, or association, between two 
variables.
Correlation coefficient (r )—in statistics, a number between -1 
and +1, inclusive, that gauges the strength of the linear association 
between two measured variables. When r = +1, the correlation is 
perfect, the two variables move in the same direction, and all points 
lie on the line. When r = -1, the correlation is again perfect and all 
points lie on the line, but the two variables move in opposite directions.
Creatinine clearance—the process whereby the kidneys remove 
creatinine from the blood by glomerular filtration. The rate of this 
process is used to estimate the glomerular filtration rate.
Critical value—a predetermined value that serves as a threshold 
between failing to reject, and rejecting, the null hypothesis. Rejection 
occurs only if the calculated statistical value is more extreme than the 
critical value.
Cutoff—see Referent value.
Degrees of freedom—the number of independent values in a 
data set.
Denominator—the bottom number in a fraction; the number of 
equal parts into which the whole is being divided.
Dependent variable—the variable whose value is determined by 
the value of the other variable.
Diluent—a liquid (solvent or solution) used to dilute a solution.
Dilution factor—the value by which the concentration of a dilu-
tion is multiplied to give the concentration of the original solution. It 
equals the reciprocal of the dilution ratio.
Dilution ratio—the ratio of the initial volume to the final volume; 
the ratio of the final concentration to the initial concentration.
Dimensional analysis—a unit-conversion technique based on the 
fact that any quantity can be multiplied by “1” without its value being 
changed.
Directly proportional—changing in proportion to another 
variable.
Dissolve—to pass into solution.
Distributive property—the law that says that multiplication dis-
tributes itself over addition: a(b + c) = (a * b) + (a * c).
Double-reciprocal plot—in the context of enzyme kinetics, a 
graph of reciprocal velocity (1/v) against reciprocal substrate concen-
tration (1/[S]). It is usually called a “Lineweaver-Burk plot.”
Efficiency—the probability that a binary test result, whether positive 
or negative, is correct.
Embedded zero—any zero that occurs between two nonzero sig-
nificant figures.
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Linear—of or pertaining to a straight line; having the properties of 
a straight line.
Linear regression—a technique that fits a straight line to a set of 
data points consisting of values for a dependent variable, y, and cor-
responding values for an independent variable, x.
Lineweaver-Burk plot—see Double-reciprocal plot.
Lipoprotein—an assembly of proteins and lipids that transport 
cholesterol and triglycerides (triacylglycerols) in the blood and other 
body fluids.

Logarithm—the exponent to which a specified base must be raised 
in order to produce a given number.

Logarithmic scale—a scale on a graph on which each unit increase 
represents an exponential increase in the underlying number.

Mantissa—the part of a logarithm to the right of the decimal point.

Maximal velocity (Vmax)—the highest reaction rate an enzyme 
can achieve under the specified conditions, substrate concentration 
included. It appears as the asymptote in the plateau on a plot of initial 
rate versus substrate concentration.

Mean—a measure of central tendency. The term itself usually refers 
to the arithmetic mean.

Mean cell hemoglobin (MCH)—the amount of hemoglobin 
per erythrocyte.
Mean cell hemoglobin concentration (MCHC)—the 
amount of hemoglobin relative to the erythrocyte’s size.
Mean cell volume (MCV)—the average size of an erythrocyte.
Median—the midpoint of a data set.
Metabolic acidosis—acidosis with a metabolic cause, such as  
diabetes, diarrhea, or poisoning.
Metabolic alkalosis—alkalosis with a metabolic cause, such as 
diuresis or vomiting.
Metric system—a system of measurement established in 1791, 
based on the number 10. The term itself has become synonymous 
with “International System of Units.”
Michaelis-Menten equation—the equation that relates the ini-
tial rate of an enzyme-catalyzed reaction to the starting concentra-
tion of substrate, describing a rectangular hyperbola, and following 
from the rapid-equilibrium model of enzyme catalysis proposed by 
Michaelis and Menten in 1913.
Miscible—capable of being mixed with something else.
Mixed number—a whole number with a proper fraction.
Mode—the most frequent value in a data set.
Molality—the amount of solute in solution per kilogram of solvent.
Molar absorptivity—the inherent ability of a chromophore to 
absorb light of a given wavelength. Its value is unique and constant 
under a specified set of conditions. It is also called the “molar extinc-
tion coefficient.”
Molar absorptivity method—the use of the Beer-Lambert law 
to calculate the concentration of a chromophore. It is preferred when 
the analyte is too unstable for constructing a standard curve.

Hypotonic—having a lower solute concentration than that of a 
given solution.
Immiscible—incapable of being mixed with something else.
Implied relative uncertainty—relative uncertainty that has 
been calculated from an absolute uncertainty assumed from the num-
ber of significant figures in a value.
Improper fraction—a fraction in which the numerator is greater 
than the denominator.
In range—falling within the defined limits of acceptability for a con-
trol result. The term itself is interchangeable with “in control.”
Independent variable—the variable whose value is controlled 
or selected.
Initial rate—in an enzyme-catalyzed reaction, the rate of the 
linear phase, in which the rate of product appearance, or of reac-
tant disappearance, is constant. It varies with the starting substrate 
concentration.
Insoluble—incapable of dissolving in a given solvent.
Interference experiment—a paired comparison in which one of 
two aliquots is spiked with a selected substance suspected of interfer-
ing with the assay; the other aliquot is not spiked.
International Normalized Ratio—prothrombin time that has 
been standardized so that the value does not depend on the instru-
ment, controls, or reagent used.
International Sensitivity Index—a value that represents the 
sensitivity, or responsiveness, of a given thromboplastin preparation 
relative to the international thromboplastin reference.
International System of Units—adopted in 1960, a modern 
version of the original metric system, based on the number 10 and 
built on seven base units.

Interpolation—the act of predicting the value of one variable from 
that of another within the range of the standard curve.

Kelvin scale—the temperature scale on which the 0-degree 
point corresponds to the theoretical absence of all thermal 
energy. Each degree on the scale equals one Celsius degree, and a  
temperature on this scale is greater than the Celsius temperature 
by 273.15.

Kinetic assay—an assay in which the signal (absorbance, for exam-
ple) is measured at each of several time points and the reaction rate 
is calculated from all of them. It is more accurate than either the end-
point or two-point assay.

Lag phase—the phase preceding linearity in an enzyme-catalyzed 
reaction. The rate is still increasing because of various processes that 
may be under way.

Leading zero—any zero that precedes the first nonzero digit in a 
number.

Least common denominator—the lowest number into which 
each of two denominators divides evenly.
Levy-Jennings chart—a graphical representation of control data 
over a certain period of time. It shows the relationship of each result 
to the mean and to multiples of the standard deviation.
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Out of range—falling outside the defined limits of acceptability 
for a control result. The term itself is interchangeable with “out of 
control.”
Outlier—an extreme value in a data set.
p value—the probability of observing, by coincidence alone, results 
more extreme than those that were actually observed (on the assump-
tion that the null hypothesis is true).
Partial pressure—the pressure of an individual gas that is one of 
several gases in a mixture.
Percentage—the number of parts out of every 100 parts.
pH—the negative logarithm of the hydrogen ion concentration; a 
measure of the acidity/alkalinity of an aqueous solution.
Positive predictive value—the probability that a positive test 
result is correct.

Precision—agreement among repeated measurements or calculated 
results.

Prevalence—the frequency of a given condition in a population 
tested at a particular time.

Proper fraction—a fraction in which the denominator is greater 
than the numerator.

Proportional systematic error—systematic error that is pro-
portional to the analyte’s concentration.

Proportionality—the relationship between two variables in which 
one changes in proportion to the other.

Proportionality constant—the constant by which the value of 
one variable is multiplied to give the value of another variable.

Prothrombin time (PT)—the amount of time required for a 
plasma specimen to clot in vitro when mixed with a commercial 
reagent containing thromboplastin.

Quality control—a process for verifying the performance char-
acteristics of a testing system, which includes reagents, electronics, 
and robotics. It consists of running special quality-control materials 
in the test being checked and then comparing the new results with 
previous ones.

Random error—error that arises from the normal vicissitudes of 
observation, which have no inherent pattern (e.g., imprecision in 
reading pipets, electronic noise in instruments, fluctuations in room 
temperature).
Ratio—a quotient of two numbers. It is the factor by which those two 
numbers differ from each other.
Ratio method—a unit-conversion technique involving an equa-
tion of ratios followed by cross-multiplication.
Reciprocals—two numbers whose product is 1.
Recovery experiment—a comparison for detecting systematic 
error in which each specimen is split into two aliquots, with one 
receiving the analyte in a known amount and the other receiving 
only diluent.
Red-cell distribution width (RDW)—a measure of the varia-
tion in RBC size in a given blood specimen.

Molar extinction coefficient—see Molar absorptivity.
Molar mass—the mass of a substance numerically equal to its for-
mula weight; the mass of one mole of the substance.
Molarity—the number of moles of a substance in 1 liter of solution.
Mole—the amount of a substance that consists of as many entities 
as there are atoms in exactly 12 grams of the element 12C. That value 
is Avogadro’s number. 
Multirules—systems of rules governing the acceptability of control 
results by comparing those results to previous results. Their pur-
pose is to keep the rate of error detection high and the rate of false 
rejection low. The Westgard system is the most common in clinical 
laboratories.
Natural logarithm—logarithm with a base of e.
Negative predictive value (NPV)—the probability that a nega-
tive test result is correct.
Nonlinear regression—a technique that fits a curve rather than a 
straight line to a set of data points consisting of values for a dependent 
variable, y, and corresponding values for an independent variable, x.
Normal distribution—a distribution that is symmetrical and bell-
shaped, described by its mean and standard deviation. The probabil-
ity of a value’s occurring within one standard deviation of the mean is 
68%; within two standard deviations, 95%; within three, 99.7%.
Normality—the number of equivalent weights of a substance in  
1 liter of solution.
Null hypothesis—the hypothesis that there is no difference 
between two phenomena being compared (e.g., variances of two 
instruments, means of two data sets).
Numerator—the top number in a fraction; the number of equal 
parts under consideration.
Opposites—two numbers that lie at the same distance from 0 on 
the number line but in reverse directions.
Ordered pair—a pair of corresponding x and y values, specified in 
that order, that define a single data point on a Cartesian graph.
Ordinate—the y coordinate of a point on a Cartesian graph.
Osmolality—the number of osmoles of particles per kilogram of 
solvent.
Osmolality gap—the difference between the measured osmolality 
and the calculated osmolality.
Osmolarity—the number of osmoles of particles per liter of 
solution.
Osmole—a mole of osmotically active particles.
Osmosis—the phenomenon in which water passes through a semi-
permeable membrane from a hypotonic solution to a hypertonic 
solution.
Osmotic fragility—the susceptibility of erythrocytes to osmotic 
stress in a hypotonic medium. It is evaluated in a test for the presence 
of spherocytes.
Osmotic pressure—hydrostatic pressure caused by the difference 
between the concentrations of two solutions separated by a semiper-
meable membrane.
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Solution—a homogeneous mixture of two or more substances that 
do not chemically react with each other.
Solvent—the component of a solution that is present in the largest 
amount.
Sparingly soluble—soluble in a given solvent, but only to a small 
degree.
Specific gravity—the ratio of the density of a solution to the den-
sity of water at 4°C.
Specificity—a measure of a test’s ability to detect only the medical 
condition in question.
Specimen pairing—in a method comparison, the strategy of test-
ing each specimen by each method. This creates a one-to-one cor-
respondence between the methods for every specimen.
Standard—see Calibrator.

Standard curve—a graph showing the relationship between the 
known amount of an analyte (concentration, for example) and a 
measurable property of that analyte (absorbance, for example). By 
means of this relationship, one can determine an unknown amount 
of that analyte in a specimen from a single measurement of the 
property.

Standard deviation—for a data set, the square root of the  
average squared distance between the observations and the mean; 
the most common measure of dispersion in a normally distributed 
data set.

Statistically significant—unlikely to have occurred under the 
circumstances, possibly providing evidence for rejecting the null 
hypothesis.

Substrate—in an enzyme-catalyzed reaction, a reactant on which 
an enzyme acts directly.

Substrate-depletion phase—in an enzyme-catalyzed reaction, 
the later phase in which the rate is decreasing as the substrate supply 
is diminishing.

Systematic error—error that occurs repeatedly and cannot be 
minimized by averaging because all the data are inaccurate in the 
same direction.

t value—the result of a t-test, comparing the difference that was 
actually observed between the means of two groups with the differ-
ence that would have been expected for randomly selected specimens.

Trailing zero—any zero that follows the last nonzero digit in a 
number.

Transmittance—the fraction of incident light that passes through 
a chemical substance (i.e., without being absorbed).
Trend—for control results, a gradual movement in one direction by 
a set of six or more consecutive data points.
True negative—a correctly negative test result for a patient who 
does not have the condition in question.
True positive—a correctly positive test result for a patient who has 
the condition in question.
Tube dilution—in a serial dilution, the constant dilution ratio from 
one tube to the next.

Reducing—the process of simplifying a fraction such that the 
numerator and denominator are as small as possible, that is, until the 
only number divisible into both of them is “1.”
Referent value—the value of a binary test result above which the 
patient is said to have the specified medical condition and below 
which the patient is said not to have it.
Regression analysis—the use of certain techniques to ascertain 
the mathematical relationship between a dependent variable and an 
independent variable.
Relative uncertainty—the fraction of a measurement’s value rep-
resented by the absolute uncertainty.
Reportable range—the span of possible test results between the 
highest and lowest that are considered accurate.
Respiratory acidosis—acidosis caused by hypoventilation (air-
way obstruction, asthma, emphysema, etc.).
Respiratory alkalosis—alkalosis caused by hyperventilation 
(anxiety, certain drugs, high altitude, etc.).
Reticulocyte index (RI)—the reticulocyte count adjusted to the 
actual hematocrit.
Reticulocyte production index (RPI)—the reticulocyte index 
corrected for the premature release of reticulocytes in anemia.

Rounding digit—the digit that occupies the place to which a num-
ber is to be rounded.

Sample dilution—in a serial dilution, the dilution ratio of a given 
tube relative to the original sample.

Scientific notation—see Exponential notation.

Semilogarithmic plot—a plot in which one scale is arithmetic 
and the other is logarithmic.

Sensitivity—a measure of a test’s ability to detect the medical condi-
tion in question in every patient who has the condition.

Serial dilution—a progressive series of dilutions in which each 
dilution is less concentrated than the preceding one, usually by a 
constant amount.

Shift—for control results, an abrupt move in which six or more con-
secutive data points all fall above or below the mean.

Significand—in the standard format of exponential notation, the 
factor containing the significant figures.

Significant figure—a digit that is known with certainty or that 
has been estimated.
Single-standard method—the use of only one standard to con-
struct a standard curve. It is useful if the relationship is known to be 
linear.
Slope—for a straight line, the ratio of the change in the independent 
variable to the change in the dependent variable; the rate of change.
Slope-intercept form—an equation of a straight line in the form 
y = mx + b, where m is the slope and b is the y-intercept.
Soluble—capable of dissolving in a given solvent.
Solute—a solution component that is not the one present in the larg-
est amount.
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Two-point assay—an assay in which the signal (absorbance, for 
example) is measured at each of two time points and the reaction rate 
is calculated between them.
Unimodal—having only one mode.
United States Customary System of Units—a system of 
measurement in common use in the United States, rooted in the sys-
tem of pre-1824 English units that had evolved from Anglo-Saxon 
and Roman units of measurement.
v/v—the number of milliliters of solute in 100 mL of solution, 
expressed as a percentage.

Variance—the average squared distance between observations. It 
is a measure of dispersion in a normally distributed data set, though 
used less commonly than the standard deviation.
w/v—the number of grams of solute in 100 mL of solution, expressed 
as a percentage.
w/w—the number of grams of solute in 100 grams of solution, 
expressed as a percentage.
y-intercept—on a graph, the point at which a line or curve inter-
sects the y-axis.
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Index
A
abscissa, 104
absolute uncertainty, 62
absorbance, 110, 155
absorption, 110
accuracy

defined, 55
in dilutions, 95
in quality control, 119
verifying or establishing, 214–217

acid-base disorders, 168–169
metabolic acidosis, 169
metabolic alkalosis, 169
respiratory acidosis, 168
respiratory alkalosis, 168–169

acid dissociation constant, 164–165
acidosis

defined, 166
metabolic, 169
respiratory, 168

addition, 2–3
associative property of, 3
commutative property of, 2
of fractions, 8–10
problems, without a calculator, 27–28
significant figures in, 58

algebra, 15–20. See also operational properties
algebraic rules

for exponents, 39
for logarithms, 39–40

alkalosis
defined, 166
metabolic, 169
respiratory, 168–169

American system. See United States Customary 
 System of Units

analytical spectroscopy, 154–157
anion gap, 169–170
antibody titer, 98
antilogarithm, 36–37
aqueous, 81
argument, 37
arithmetic mean, 121
arithmetic scale, 42
assay modes, 158
associative property

of addition, 3
of multiplication, 4

Avogadro’s number, 74

B
base, 36
Beer-Lambert law, 155
bias, 62, 216

binary interpretation of numerical data, 212–214
buffered, 164. See also pH buffering

C
calculations

final cell count, shortcuts to, 182–183
lipid, 172–173
logarithms used to accelerate, 45–46
physiological acid-base, 166–167
significant figures in results, 57–60

calculators
logarithms used instead of, 46
tips for calculating without, 27

calibrators, 110
canceling, 8
Cartesian coordinate system, 103
categorical variable, 137
Celsius, 77–78
central tendency, 119–121

mean, 120–121
median, 119–120
mode, 121
outliers and, 121

characteristic, 61
chemiluminescence, 110
chemistry, 153–174

acid-base disorders, 168–169
analytical spectroscopy, 154–157
anion gap, 169–170
creatinine clearance, 173–174
enzyme kinetics, 157–164
lipid calculations, 172–173
osmolality, 170–171
osmolality gap, 171–172
osmolarity, 170–171
osmolarity gap, 171–172
pH buffering, 164–168

chi-square (χ2) 141–143
chromophore, 155
Clinical Laboratory Improvement Act, 195, 214
CO2 as dissolved gas, 167–168
coefficient(s)

correlation, 132, 133
of determination, 134–135
molar extinction, 155
of variation, 123

common logarithms, 37
commutative property

of addition, 2
of multiplication, 4

complex fractions, 11–12
concentration, 80–89

converting between units, 87–89
defined, 81

molality for expressing, 83
molarity for expressing, 83
NIST proposed changes, 84, 85
normality for expressing, 83–84
parts-per notation for expressing, 82
percentage for expressing, 81–82
pH scale and, 85–87
specific gravity and, 84–85

confidence interval, 130–132
conjugate acid, 164, 165
conjugate acid-base pair, 164, 165, 166–167
conjugate base, 164, 165, 166
constant systematic error, 202, 203
contingency table, 141
controls, 195
converting between units, 87–89
correction of WBC count for nucleated RBCs, 189
correlation, 132–134

defined, 125
vs. regression, 133

correlation coefficient, 132, 133
creatinine clearance, 173–174
critical value, 136
cross-multiplication, 22–23
curves. See standard curves
cutoff, 213–214

D
data weighting, 128–129
decimals

fractions expressed as, 10–11
misplaced decimal points in percentages, 14
percentages converted to, 13
rounding, 53–54

degrees of freedom, 122–123, 130, 131
denominator, 6
dependent variable

corresponding values of, 104
defined, 103
in regression analysis, 127

diagnostic value, 209–214
binary interpretation of numerical data, 212–214
efficiency, 210–211
predictive value, 211–212
prevalence, 211
sensitivity, 209–210
specificity, 210

difference, 3
diluent, 94
dilution factor, 94
dilution ratio, 94
dilutions, 93–98

accurate, importance of, 95
antibody titer and, 98
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Henderson-Hasselbalch equation, 165–166
high-density lipoprotein (HDL), 172–173
hypertonic, 170–171
hypotonic, 170–171

I
immiscible, 81
implied relative uncertainty, 62
improper fractions, 11
in control, 195
independent variable, 103–104

corresponding values of, 104
defined, 103
in regression analysis, 127

initial rate, 159, 160
INR. See International Normalized Ratio (INR)
in range, 195
insoluble, 81
instruments, quality assurance for. See quality assur-

ance for methods and instruments
interference experiment, 217
International Normalized Ratio (INR), 188–189
International Sensitivity Index (ISI), 188–189
International System of Units (SI), 73
interpolation

in regression analysis, 127
standard curves and, 111

intrinsic clearance tests, 173
ISI. See International Sensitivity Index (ISI)

K
Ka, 164–165
Kelvin, 78
kinetic assay, 158
KM, 160–161

clinical laboratory significance of, 161
defined, 160
physiological significance of, 161

L
lag phase, 158–159
LDL. See low-density lipoprotein (LDL)
leading zero, 56
least common denominator, 9
length

interconverting U.S. customary units and metric 
units, 73

metric units for, 69
SI units for, 73
U.S. customary units for, 69

Levey-Jennings chart, 195–197
likelihood ratios, 214
linear, 104
linear phase, 159
linear regression, 125–127
linear transformations, 162
lines. See straight lines
Lineweaver-Burk plot, 162–164
lipid calculations, 172–173
lipoprotein, 172
logarithmic scale, 41–43
logarithmic transformation of ratios, 43–44
logarithm(s), 36–37, 39–46

algebraic rules for, 39–40
argument of, 37

extrapolation
in regression analysis, 127
standard curves and, 111

extrinsic clearance tests, 173

F
factors, 4
Fahrenheit, 77–78
false negative, 209
false positive, 209
figure significance. See also significant figures

exception of repeated measurements and, 59–60
precision and, 55
rules of, 63–64

first-order processes, 36
Fisher, Ronald, 136
fives, rounding, 54
fluorescence, 110
formula weight, 74
fractions, 6–12

adding, 8–10
canceling, 8
complex, 11–12
dividing, 7
expressing as decimals, 10–11
improper, 11
multiplying, 6–7
reducing, 7–8
subtracting, 8–10

Friedewald equation, 172–173
F test, 136–137

G
geometric mean, 121
GFR. See glomerular filtration rate (GFR)
glomerular filtration rate (GFR), 173–174
goodness-of-fit, 129–132

confidence interval in, 130–132
root-mean-squared error in, 130
standard error of the slope in, 130
visual inspection in, 129

Gosset, William S., 137
graphs

defined, 103
logarithms used to reveal, 46
nonlinear, 112

H
harmonic mean, 121
HDL. See high-density lipoprotein (HDL)
hemacytometer, 181–182
hematocrit, 183
hematology, 180–189

correction of WBC count for nucleated  
RBCs, 189

enumerating reticulocytes, 186–187
erythrocyte indices, 183–184
hematocrit, 183
International Normalized Ratio, 188–189
manual cell enumeration, 181–183
osmotic fragility, 187–188
red-cell distribution width, 184
reticulocyte production index, 185–186
Rule of Three, 184

dilutions (cont.) 
sample, 97
serial, 96–98
simple, 93–96
tube, 97

dimensional analysis, 75–76
directly proportional, 103
dispersion, 121–123

coefficient of variation in, 123
standard deviation in, 122–123
variance in, 123

dissolve, 81
distributive property, 17–20
division, 5–6

of fractions, 7
problems, without a calculator, 31–32
sign combinations in, 5
significant figures in, 57–58
by zero, 5

double-reciprocal plot, 162–164

E
e, 44–45
efficiency, 210–211
electric current, SI units for, 73
elements, average atomic weights of, 74
embedded zero, 57
end-point assay, 158, 159
English Imperial. See United States Customary System 

of Units
enumerating erythrocytes, 182
enumerating leukocytes, 182
enumerating platelets, 182
enumerating reticulocytes, 186–187
enzyme, 157
enzyme kinetics, 157–164

assay modes in, 158
linear transformations in, 162
Michaelis-Menten equation in, 159–161
reaction phases in, 158–159
reaction rates in, 157–158

equivalent, 84
equivalent weight, 83
errors

goodness-of-fit, 130
percentage, among expressions of change reported 

as, 14–15
random, 202–203
rounding, 62–63
systematic, 202–203

erythrocyte indices, 183–184
mean cell hemoglobin, 183
mean cell hemoglobin concentration, 184
mean cell volume, 183

exponential expressions, 60–61
exponential notation, 37–39
exponential term, 38, 60–61
exponents, 36–39

algebraic rules for, 39
negative, 37, 38
positive, 38
situations in which they are used, 36

expressions
of change reported as percentages, errors among, 14–15
exponential, 60–61
logarithms used to simplify, 46
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Henderson-Hasselbalch equation, 165–166
physiological acid-base calculations, 166–167
physiological buffering, 167
system, function of, 165

pH scale, 85–87
physiological acid-base calculations, 166–167
physiological buffering, 167
pKa, 165
polynomial method, 218
positive predictive value (PPV), 211–212
ppb. See parts per billion (ppb)
ppm. See parts per million (ppm)
ppt. See parts per trillion (ppt)
precision, 55, 119
predictive value, 211–212
prevalence, 211
product, 4
proper fractions, 11
proportionality, 103
proportionality constant, 103
proportional systematic error, 203
prothrombin time (PT), 188
PT. See prothrombin time (PT)
p value, 136, 144

Q
quality assurance for methods and instruments, 214–217

accuracy, verifying or establishing, 214–217
constant systematic error, detecting, 217
precision, ascertaining, 217
proportional systematic error, detecting, 217

quality control, 194–203
defined, 195
Levey-Jennings chart in, 195–197
multirules for three controls in, 200–201
random error, 202–203
rationale behind rules in, 201
resolution of out-of-range controls in, 201
systematic error in, 202–203
Westgard multirules in, 197–200

quotient, 5

R
random error, 202–203
ratio method, 77
ratios, 20–23

cross-multiplication, 22–23
defined, 20
logarithms used to restore symmetry to, 46

RDW. See red-cell distribution width (RDW)
reaction phases in enzyme kinetics, 158–159
reaction rates in enzyme kinetics, 157–158
receiver-operating characteristic curves (ROC curves), 

214
reciprocals, 5
recovery experiment, 217
red-cell distribution width (RDW), 184
reducing, 7–8
reference range, 218
referent value, 213–214
regression, 125–129

analysis, 125
vs. correlation, 133
data weighting in, 128–129
extrapolation and, 127

sign combinations in, 4
significant figures in, 57–58

multirules
defined, 197
for three controls, 200–201
Westgard, 197–200

N
National Institute of Standards and Technology 

(NIST), 84, 85
natural logarithms, 37
negative exponents, 37, 38
negative predictive value (NPV), 211–212
NIST. See National Institute of Standards and  

Technology (NIST)
nonlinear graphs, 112
nonlinear regression, 127–128
normal distribution, 123–125
normality, 83–84
nucleated RBCs, correction of WBC count for, 189
null hypothesis, 136, 144
numerator, 6
numerical data, binary interpretation of, 212–214

O
operational properties

associative property, 3, 4
commutative property, 2, 4
distributive property, 17–20

opposites, 2
ordered pair, 104
ordinate, 104
osmolality, 170–171
osmolality gap, 171–172
osmolarity, 170–171
osmolarity gap, 171–172
osmole, 171
osmosis, 170–171
osmotic fragility, 187–188
osmotic pressure, 171
outliers, 121, 195–196
out of control, 195
out of range, 195
out-of-range controls, resolution of, 201

P
paired t test, 140–141
partial pressure, 167–168
parts per billion (ppb), 82
parts per million (ppm), 82
parts per trillion (ppt), 82
percentage(s), 12–15

concentration expressed with, 81–82
converting to decimals, 13
defined, 12
error among expressions of change reported as, 

14–15
misplaced decimal points, 14
problems, solving in general, 13–14  

solving without a calculator, 32–33
pH buffering, 164–168

acid dissociation constant, 164–165
CO2 as dissolved gas, 167–168

common, 37
natural, 37, 45
significant figures in, 60–61
situations in which they are used, 36
undefined, 39–40
usefulness of, 45–46
for zero, 39

low-density lipoprotein (LDL), 172–173
luminous intensity, SI units for, 73

M
mantissa, 61
manual cell enumeration, 181–183

enumerating erythrocytes, 182
enumerating leukocytes, 182
enumerating platelets, 182
shortcuts to calculated final cell count, 182–183

maximal velocity (Vmax), 160. See also KM
MCH. See mean cell hemoglobin (MCH)
MCHC. See mean cell hemoglobin concentration 

(MCHC)
MCV. See mean cell volume (MCV)
mean, 120–121
mean cell hemoglobin (MCH), 183
mean cell hemoglobin concentration  

(MCHC), 184
mean cell volume (MCV), 183
measurement, 68–78

equivalencies between systems of, 73
International System of Units, 73
metric system, 69–73
United States Customary System of Units, 69, 73

median, 119–120
Menten, Maude, 160
metabolic acidosis, 169
metabolic alkalosis, 169
method evaluation, 208–218

diagnostic value in, 209–214
quality assurance for methods and instruments, 

214–217
reference range, determining, 218
reportable range, determining, 217–218

methods, quality assurance for. See quality assurance 
for methods and instruments

metric system, 69–73
converting between units, 70–72
prefixes, 69–70
U.S. customary units and, equivalencies in, 73

Michaelis, Leonor, 160
Michaelis-Menten equation, 159–161
miscible, 81
mixed number, 11
mode, 121
molality, 83
molar absorptivity, 155
molar absorptivity method, 156
molar extinction coefficient, 155
molarity, 83
molar mass, 74
mole, 74
multiplication, 4–5

associative property of, 4
commutative property of, 4
cross-multiplication, 22–23
of fractions, 6–7
problems, without a calculator, 29–31
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